Ионные каналы клеточной мембраны


Классификация ионных каналов на мембране возбудимых систем, их функциональное значение.

Физиологиявозбудимыхсистем.

1. Возбудимые ткани: особенности строения мембраны, механизмы транспорта веществ через мембрану (активный и пассивный транспорт).

Возбудимость-это свойство возбудимых тканей приходить в возбуждение при изменениях факторов внешней или внутренней среды организма.

По характеру ответа на действие раздражителей все ткани делятся на специфические и неспецифические. Специфические ткани на действие раздражителя реагируют процессом возбуждения.

Процесс возбуждения — это быстрое изменение заряда мембраны клетки в ответ на действие раздражителя. К возбудимым тканям относятся нервная, мышечная, железистая.

Раздражители бывают:

-физические (свет, звук, температура)

-химические (органические и неорганические вещ-ва)

-физико-химические (осмотическое давление, pH)

-биологические (потенциал действия)

А также: адекватные, неадекватные(в естественных условиях не вызывают возбуждение тканей)

+подпороговые, пороговые, надпороговые

Реактивность - Способность клеток или тканей отвечать на действие раздражителей.

Клеточная мембрана (плазмолемма) представлена двойным слоем фосфолипидов(фосфатидилсерин, фосфатидилхолин, фосфатидилинозитол), в котором расположены молекулы белков. Фосфолипиды и белки могут быть связаны с углеводами, образуя гликопротеины и гликолипиды. Белки мембраны выполняют функцию каналов, переносчиков, ферментов, регуляторов, рецепторов; углеводы — рецепторов.

Белки мембран бывают:

-интегральные (молекулы белков прочно связаны с мембранными фосфолипидами и не могут отделиться от структуры мембраны без разрушения липидного бислоя; могут совершать латеральные движения относительно поверхности бислоя. Если в комплексе белков-неподвижны; Большинство-трансмембранные могут образовывать каналы, передают химические сигналы через мембрану, фиксаторы и ферменты)

-периферические (расположены с внутренней стороны мембраны, где они связаны с полярными областями интегральных белков, большинство связано с элементами цитоскелета, выполняют регуляторную, рецепторную функцию, формируют гликокаликс (функция распознавания клетки и взаимодействие ее с другими клетками)

Одной из функций мембраны является транспорт веществ. Жирорастворимые вещества транспортируются, растворяясь в фосфолипидах мембраны. Водорастворимые вещества перемещаются с помощью белков. Если транспорт веществ осуществляется с затратой энергии АТФ, то он называется активным, а если без затраты АТФ — то пассивным.



1. Пассивный транспорт - это движение молекул или ионов по концентрационному либо электрохимическому градиенту. Это может быть простая диффузия, как в случае проникновения через плазматическую мембрану газов (например О2 и СО2 ) или простых молекул (этанола).

2. Облегченная диффузия - это быстрое движение молекул через мембрану с помощью специфических мембранных белков, называемых пермеазами. Этот процесс специфичен, он протекает быстрее простой диффузии, но имеет ограничение скорости транспорта. Облегченная диффузия обычно характерна для водорастворимых веществ. Диффузия осуществляется первым законом Фика: движение молекул через мембрану клеток осуществляется по концентрационному градиенту вещества.

Мембранный транспорт веществ различается также по направлению их перемещения и количеству переносимых данным переносчиком веществ:

· 1) Унипорт— транспорт одного вещества в одном направлении в зависимости от градиента

· 2) Симпорт— транспорт двух веществ в одном направлении через один переносчик.

· 3) Антипорт— перемещение двух веществ в разных направлениях через один переносчик.

3. Активный транспорт - это движение ионов или молекул через мембрану против градиента концентрации за счет энергии гидролиза АТФ. Имеются три основных типа активного транспорта ионов: натрий-калиевый насос - Na+ /K+-аденозинтрифосфатаза (АТФаза), переносящая Na+ наружу, а K+ внутрь; кальциевый (Са2+) насос - Са2+-АТФаза, которая транспортирует Са2+ из клетки или цитозоля в саркоплазматический ретикулум; протонный насос — Н+-АТФаза, протонно-калиевая АТФ-аза.

В итоге во внеклеточной среде создается высокая концентрация ионов Na (3) , а внутри клетки— высокая концентрация K (2). Работа Na, K— АТФазы создает не только разность концентраций, но и разность зарядов (она работает как электрогенный насос). На внешней стороне мембраны создается положительный заряд, на внутренней— отрицательный.



 

Потенциал действия (ПД), его фазы. Ионные механизмы формирования ПД.

Потенциа́лде́йствия — волнавозбуждения, перемещающаяся по мембранеживой клетки в виде кратковременного изменения мембранного потенциала на небольшом участке возбудимой клетки (нейрона или кардиомиоцита), в результате которого наружная поверхность этого участка становится отрицательно заряженной по отношению к соседним участкам мембраны, в то время, как в покое она заряжена положительно.

Потенциал действия является физиологической основой нервного импульса.

ПД сопровождается следовыми процессами:

-Отрицательный следовой потенциал (следовая деполяризация)

-Положительный следовой потенциал (следовая гиперполяризация)

Изменение возбудимости мембраны(фазы):

1) Фаза медленной деполяризации (засчет сопротивления на мембране)

2) Фаза быстрой деполяризации (возбуждение снижается)=абсолютный рефрактерный период) Na идет в клетку через быстрые электровозбудимые натриевые каналы, перезаряжает мембрану (внутри +, снаружи - )

3) Фаза быстрой реполяризации (возбуждение постепенно восстанавливается) К идет из клетки

4) Следовая деполяризация (возбуждение повышается) остаточный ток Na в клетку

5) Следовая гиперполяризация (возбуждение снижается) остаточный ток К в клетку, повышение активности Na/К АТФазы

6) Овершут

 

 

Физиологиявозбудимыхсистем.

1. Возбудимые ткани: особенности строения мембраны, механизмы транспорта веществ через мембрану (активный и пассивный транспорт).

Возбудимость-это свойство возбудимых тканей приходить в возбуждение при изменениях факторов внешней или внутренней среды организма.

По характеру ответа на действие раздражителей все ткани делятся на специфические и неспецифические. Специфические ткани на действие раздражителя реагируют процессом возбуждения.

Процесс возбуждения — это быстрое изменение заряда мембраны клетки в ответ на действие раздражителя. К возбудимым тканям относятся нервная, мышечная, железистая.

Раздражители бывают:

-физические (свет, звук, температура)

-химические (органические и неорганические вещ-ва)

-физико-химические (осмотическое давление, pH)

-биологические (потенциал действия)

А также: адекватные, неадекватные(в естественных условиях не вызывают возбуждение тканей)

+подпороговые, пороговые, надпороговые

Реактивность - Способность клеток или тканей отвечать на действие раздражителей.

Клеточная мембрана (плазмолемма) представлена двойным слоем фосфолипидов(фосфатидилсерин, фосфатидилхолин, фосфатидилинозитол), в котором расположены молекулы белков. Фосфолипиды и белки могут быть связаны с углеводами, образуя гликопротеины и гликолипиды. Белки мембраны выполняют функцию каналов, переносчиков, ферментов, регуляторов, рецепторов; углеводы — рецепторов.

Белки мембран бывают:

-интегральные (молекулы белков прочно связаны с мембранными фосфолипидами и не могут отделиться от структуры мембраны без разрушения липидного бислоя; могут совершать латеральные движения относительно поверхности бислоя. Если в комплексе белков-неподвижны; Большинство-трансмембранные могут образовывать каналы, передают химические сигналы через мембрану, фиксаторы и ферменты)

-периферические (расположены с внутренней стороны мембраны, где они связаны с полярными областями интегральных белков, большинство связано с элементами цитоскелета, выполняют регуляторную, рецепторную функцию, формируют гликокаликс (функция распознавания клетки и взаимодействие ее с другими клетками)

Одной из функций мембраны является транспорт веществ. Жирорастворимые вещества транспортируются, растворяясь в фосфолипидах мембраны. Водорастворимые вещества перемещаются с помощью белков. Если транспорт веществ осуществляется с затратой энергии АТФ, то он называется активным, а если без затраты АТФ — то пассивным.

1. Пассивный транспорт - это движение молекул или ионов по концентрационному либо электрохимическому градиенту. Это может быть простая диффузия, как в случае проникновения через плазматическую мембрану газов (например О2 и СО2 ) или простых молекул (этанола).

2. Облегченная диффузия - это быстрое движение молекул через мембрану с помощью специфических мембранных белков, называемых пермеазами. Этот процесс специфичен, он протекает быстрее простой диффузии, но имеет ограничение скорости транспорта. Облегченная диффузия обычно характерна для водорастворимых веществ. Диффузия осуществляется первым законом Фика: движение молекул через мембрану клеток осуществляется по концентрационному градиенту вещества.

Мембранный транспорт веществ различается также по направлению их перемещения и количеству переносимых данным переносчиком веществ:

· 1) Унипорт— транспорт одного вещества в одном направлении в зависимости от градиента

· 2) Симпорт— транспорт двух веществ в одном направлении через один переносчик.

· 3) Антипорт— перемещение двух веществ в разных направлениях через один переносчик.

3. Активный транспорт - это движение ионов или молекул через мембрану против градиента концентрации за счет энергии гидролиза АТФ. Имеются три основных типа активного транспорта ионов: натрий-калиевый насос - Na+ /K+-аденозинтрифосфатаза (АТФаза), переносящая Na+ наружу, а K+ внутрь; кальциевый (Са2+) насос - Са2+-АТФаза, которая транспортирует Са2+ из клетки или цитозоля в саркоплазматический ретикулум; протонный насос — Н+-АТФаза, протонно-калиевая АТФ-аза.

В итоге во внеклеточной среде создается высокая концентрация ионов Na (3) , а внутри клетки— высокая концентрация K (2). Работа Na, K— АТФазы создает не только разность концентраций, но и разность зарядов (она работает как электрогенный насос). На внешней стороне мембраны создается положительный заряд, на внутренней— отрицательный.

 

Классификация ионных каналов на мембране возбудимых систем, их функциональное значение.

Каналы мембраны обладают способностью пропускать исключительно ионы и (или) воду. Ионные каналы представлены интегральными белками (гликопротеинами), пронизывающими липидный бислой мембраны.

Свойства каналов: селективность, способ открытия, скорость активации и инактивации, наличие и расположение рецепторов и регуляторных участков, чувствительность к химическим веществам (блокаторам, т. е. антагонистам, и активаторам, т. е. агонистам). Условно каналы делят на неспецифические (неселективные) и специфические (селективные). Существуют неспецифические каналы для ионов калия, натрия и кальция. Специфические каналы пропускают один вид ионов.

Функционально целесообразной является классификация каналов на неуправляемые (нерегулируемые) и управляемые (регулируемые):

-Управляемые: калиевые каналы утечки (есть ворота, есть рецепторы, способны находиться в открытом или закрытом состоянии)

-Неуправляемые: пора, нет ворот, нет рецепторов, заполнены водой, всегда открыты.

Выделяют два вида каналов в зависимости от природы управляющего фактора:

1. К первому виду относятся каналы, имеющие собственный сенсор внешнего сигнала . Он входит в состав макромолекулы канала. В зависимости от способа управления эти каналы делятся на:

а) потенциал-управляемые (электровозбудимые, потенциалочувствительные) — их проводимость зависит от электрического заряда на мембране (Nа-, К-, Са-Сl-ные). Для открытия этих каналов необходимы значительные сдвиги потенциала мембраны (быстрые электровозбудимыеNа- и К-каналы, медленные электровозбудимыеСа-Nа-каналы). Данный вид каналов участвует в формировании потенциала действия;

б) лиганд-управляемые (хемовозбудимые) — открываются и закрываются при воздействии специфических химических веществ (медиаторов). Обеспечивают быструю передачу сигналов в химических синапсах. Эти каналы открываются при связывании с рецептором специфических агонистов — ацетилхолина, глутамата, глицина, гамма-аминомасляной кислоты и называются ионотропными. Примером являются каналы постсинаптической мембраны мионеврального синапса, вегетативных ганглиев;

в) механосенситивные или стреч-каналы(механовозбудимые) — чувствительны к растяжению мембраны. Эти каналы обнаружены как в возбудимых клетках (слуховых клетках, механорецепторах, нейросекреторных клетках, гладкомышечных, кардиомиоцитах), так и невозбудимых (глиальных, сосудистом эндотелии, эритроцитах). Во многих клетках были обнаружены как неселективные, так и селективные (для ионов К и Сl) стреч-каналы.

2. В каналах второго вида рецептор внешнего сигнала пространственно разобщен с каналом. Взаимодействие рецептора и канала осуществляется с помощью растворимых внутриклеточных вторичных посредников. Эти каналы называются метаботропные. При взаимодействии медиатора с рецептором на мембране активируется G-белок, который, в свою очередь, активирует фермент (аденилатциклазу, фосфолипазу). В результате в цитоплазме образуются сигнальные молекулы вторичных посредников, которые влияют на проводимость канала.

3. Быстрые и медленные каналы

4. Na, K, Cl. Na/K, Na/Ca каналы

3. Мембранный потенциал покоя (МПП), механизм его формирования. Ионные градиенты на мембране. Роль Na+/K+ - насоса в поддержании МПП.

Все клеточные мембраны поляризованы, т. е. регистрируется разность потенциалов между наружной и внутренней стороной мембраны.

Эта разность потенциалов получила название мембранный потенциал (МП), а в возбудимых тканях — мембранный потенциал покоя (МПП). Величина МПП возбудимых клеток составляет от –50 мВ до –90 мВ. Механизм формирования МПП объясняет мембранно-ионная теория. Мембрана клеток возбудимых систем характеризуется наличием градиента катионов и анионов. Внутреннее содержимое клетки представлено преимущественно катионами калия и анионами органических кислот. Снаружи клетки находятся катионы натрия и анионы хлора. В состоянии покоя клеточная мембрана хорошо проницаема для ионов калия (в скелетных мышечных волокнах и для ионов хлора), менее проницаема для ионов натрия и практически непроницаема для анионов органических кислот(для них нет каналов). Ионы калия по градиенту концентрации путем простой диффузии диффундируют из клетки через калиевые каналы утечки, заряжая наружную поверхность мембраны электроположительно. Анионы органических кислот остаются в клетке, тем самым обеспечивая появление разности потенциалов. Таким образом, внутренняя поверхность мембраны становится электроотрицательной по отношению к наружной ее поверхности. Эта разность потенциалов называется мембранным потенциалом покоя. Возникшая разность потенциалов препятствует дальнейшему выходу ионов калия из клетки, наступает равновесие между диффузией калия из клетки по концентрационному градиенту и входом этих катионов по электрическому градиенту. Мембранный потенциал, при котором достигается это равновесие, называется равновесным калиевым потенциалом. При изменении градиента ионов калия на мембране происходит изменение МПП. Функциональное значение МПП заключается в готовности клетки принимать информацию, т. е. реагировать на воздействия.

В состоянии покоя мембрана нервных клеток незначительно проницаема для ионов натрия и хлора, и вклад этих ионов в формирование МПП в нейронах невелик. Величина МПП нейронов в среднем составляет –70 мВ. Мембрана скелетных мышечных волокон в состоянии покоя относительно хорошо проницаема для ионов хлора, что приводит к увеличению трансмембранной разности потенциалов до –90 мВ. Снижение МПП носит название деполяризация, а его увеличение — гиперполяризация.

Постоянство концентрации ионов калия и натрия на мембране обеспечивается работой натрий-калиевого насоса (натрий-калиевой АТФазы). Это интегральный белок, выполняющий функцию транспорта ионов калия в клетку и натрия из клетки. Используя одну молекулу АТФ насос выносит из клетки 3 иона натрия и вносит 2 иона калия. Таким образом, при работе насоса формируется дополнительный заряд мембраны — насосный потенциал. Следовательно, МПП нейрона имеет две составляющих: концентрационный потенциал и насосный потенциал, а натрий-калиевый насос обладает электрогенными свойствами, т. е. при работе формирует дополнительный заряд на мембране. Работа насоса блокируется сердечным гликозидом уабаином. При блокаде насоса со временем происходит выравнивание концентраций натрия и калия на мембране и, как следствие, снижение МПП. Активация работы насоса происходит при увеличении концентрации натрия внутри клетки и (или) увеличении концентрации калия на наружной поверхности мембраны.

cyberpedia.su

Хлоридные каналы — Википедия

Материал из Википедии — свободной энциклопедии

Хлоридные каналы — суперсемейство белков, образующих в клеточных мембранах ионные каналы, отвечающие за перенос ионов хлора. Хлоридные каналы выполняют ряд важных физиологических и клеточных функций, таких как регулирование внутриклеточной кислотности и объёма клетки, транспорт органических веществ, клеточная миграция, пролиферация и дифференцировка.

Хлоридные каналы играют важную роль в установлении мембранного потенциала покоя и поддержании нормального объёма клетки. Как правило, эти каналы способны переносить не только ионы хлора Cl, но и HCO3, I, SCN и NO3. Структура хлоридных каналов отличается от других каналов. Белки включают от 10 до 12 трансмембранных спиралей, образующих в клеточной мембране единственную пору. Активация каналов может происходить под действием потенциала, кальция Ca2+, различных внеклеточных лигандов или кислотности.

Анион-селективные каналы разделяются на несколько групп на основе их функциональных свойств, таких как потенциал-зависимость, проводимость канала, селективность, чувствительность к блокаторам, кинетика, молекулярная структура и клеточная локализация. Хлоридные каналы — интегральные мембранные белки как и другие клеточные каналы и могут находиться либо в клеточной плазматической мембране, либо в мембранах внутриклеточных органелл. Ионный транспорт через канал осуществляется посредством диффузионного ионного потока по электрохимическому градиенту того или иного иона, т.е. по совокупности мембранного потенциала и разницы в концентрациях иона хлора Cl в цитоплазме и во внеклеточной среде. Это определяет будет ли канал переносить ионы из клетки или внутрь неё.

Хлоридные каналы обладают относительной анионной селективностью и могут переносить определённые анионы даже лучше, чем хлоридный ион. Название же их связано с тем, что хлоридный ион является самым распространённым анионом в биологических тканях. К функциям хлоридных каналов относятся регуляция клеточного объёма, ионный гомеостаз, трансэпителиальный транспорт, регуляция электрической возбудимости клетки, секреция, абсорбция и др.

Классификация хлоридных каналов меняется по мере накопления информации о их свойствах и функционировании. В настоящее время известно несколько групп хлоридных каналов. Самая большая группа — CLCN (у человека найдено 9 генов: CLCN1-7, CLCNKA и CLCNKB). Кальций-зависимые хлоридные каналы CLCA образуют отдельную группу, в которую входят 4 гена человека (CLCA1-4). Группа внутриклеточных хлоридных каналов CLIC включает 7 генов человека (CLIC1-6 и CLCC1). К нуклеотид-зависимым хлоридным каналам относят 2 гена: CLNS1A и CLNS1B.

  • DIDS — ингибитор анионных каналов.
  • Флоретин — ингибитор хлоридных каналов.
  • Хлоротоксин — ингибитор хлоридных каналов низкой проводимости, активный ингредиент яда скорпиона Leiurus quinquestriatus.
  • Schmidt-Rose T., Jentsch T.J. Reconstitution of functional voltage-gated chloride channels from complementary fragments of CLC-1 (англ.) // J. Biol. Chem. : journal. — 1997. — August (vol. 272, no. 33). — P. 20515—20521. — doi:10.1074/jbc.272.33.20515. — PMID 9252364.
  • Zhang J., George AL Jr, Griggs R.C., Fouad G.T., Roberts J., Kwieciński H., Connolly A.M., Ptácek L.J. Mutations in the human skeletal muscle chloride channel gene (CLCN1) associated with dominant and recessive myotonia congenita (англ.) // Neurology (англ.)русск. : journal. — Wolters Kluwer (англ.)русск., 1996. — October (vol. 47, no. 4). — P. 993—998. — PMID 8857733.
  • Mindell J.A., Maduke M. ClC chloride channels (англ.) // Genome Biol. (англ.)русск.. — 2001. — Vol. 2, no. 2. — P. REVIEWS3003. — doi:10.1186/gb-2001-2-2-reviews3003. — PMID 11182894.

ru.wikipedia.org

Клетки под давлением

Статья на конкурс «био/мол/текст»: Вы не задумывались, что привычные нам животные, да и мы сами, могли бы выглядеть иначе? Жизнь началась с того, что образовалась клетка — единица всего живого, развитие которой происходило под действием внешних физических полей: гравитационного и электромагнитного. Изменение внешнего воздействия приводит к изменению механического напряжения внутри клетки, которое должно сопровождаться адекватной реакцией клетки без потери способности к самовоспроизведению и полноценной жизнедеятельности. Выраженность и последствия деформаций будут зависеть от собственных механических характеристик клетки и чувствительности ее механосенсоров, на роль которых претендуют различные структуры. Рассмотрим, что же известно о четырех из них: внеклеточном матриксе, механочувствительных ионных каналах, подмембранном и внутреннем цитоскелете.

Обратите внимание!

Эта работа опубликована в номинации «лучшая обзорная статья» конкурса «био/мол/текст»-2015.


Спонсором номинации «Лучшая статья о механизмах старения и долголетия» является фонд «Наука за продление жизни». Спонсором приза зрительских симпатий выступила фирма Helicon.


Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.

Клетка — структурная единица всего живого — развивается под постоянным действием внешних стимулов — тепла, пищи, регуляторных гормонов. Однако есть еще один тип стимуляции, который должна воспринимать живая клетка — механическое напряжение. Изменение внешнего воздействия (его вектора, амплитуды) закономерно должно приводить к изменению механического напряжения внутри клетки. Степень выраженности и последствия этих деформаций для жизнедеятельности клетки будут зависеть от собственных механических характеристик клетки и чувствительности ее механосенсоров [1], в роли которых могут выступать различные структуры, способные чувствовать механическую стимуляцию и реагировать на нее. Можно выделить четыре основных типа механосенсоров: внеклеточный матрикс, механочувствительные ионные каналы, подмембранный цитоскелет и комплексы компонентов внутреннего цитоскелета. Рассмотрим, что же известно на сегодня о каждом из них.

Внеклеточный матрикс и мембранные белки

Первый претендент на роль механосенсора — внеклеточный матрикс и связанные с ним мембранные белки (рис. 1). Одной из причин такого предположения послужила реакция этих структур на внешнее механическое воздействие. Было показано, что приложение растягивающей силы к культуре нейронов или гладкомышечных клеток через внеклеточный матрикс приводит к увеличению полимеризации микротрубочек [2, 3].

Рисунок 1. Мембранные белки в составе плазматической мембраны. Рисунок с сайта www.pinterest.com.

Рисунок 2. Схема строения молекулы интегрина. Трансмембранные участки обеих субъединиц белка представлены α-спиралями, крупные внеклеточные домены связывают лиганды (в данном случае — молекулы фибронектина), внутриклеточные — принимают активирующие сигналы, поступающие из клетки. Считается, что на последнем этапе активирующего сигналинга белок цитоскелета талин особым образом связывается с небольшим цитоплазматическим «хвостиком» β-субъединицы, меняя конформацию интегрина. В результате прочность связывания рецептора с лигандом резко возрастает, и сигнал из внеклеточного матрикса передается в клетку. Обычно интегрины активны во время клеточной миграции, тромбообразования (агрегации тромбоцитов при повреждении сосудистой стенки), выхода лейкоцитов из кровеносной системы, построении внеклеточного матрикса. Рисунок с сайта www.studyblue.com.

Каким же образом это могло произойти? Попробуем рассмотреть этот процесс на молекулярном уровне. Интегрины — трансмембранные гетеродимерные клеточные рецепторы, формирующие связи с различными белками внеклеточного матрикса (фибронектином, витронектином, коллагеном, ламинином) и передающие межклеточные сигналы, образуют первичный участок трансдукции и поэтому могут рассматриваться как механосенсор. Что совсем не удивительно, ведь интегрины — неотъемлемые участники процессов клеточной адгезии, пролиферации и перемещения.

Интегриновые рецепторы — это гетеродимеры, состоящие из одной α- и одной β-субъединицы (рис. 2). У человека синтезируется как минимум 18 α- и 8 β-субъединиц, из которых в разных комбинациях строится 24 типа интегрина [4], различающихся по специфичности взаимодействия с лигандами. Субъединицы α определяют специфичность интегрина к лиганду, а β связаны со структурами цитоскелета и обеспечивают передачу сигнала внутри клетки. Интегрины присутствуют в мембране постоянно, но для связывания лиганда они должны активироваться, а это происходит, например, при взаимодействии других клеточных рецепторов с цитокинами [5].

У внутренней поверхности клеточной мембраны в зонах образования интегриновых контактов с адгезивными белками внеклеточного матрикса целый ряд белков собирается в фокально-адгезивный комплекс. Это существенно затрудняет анализ вклада каждого из них в механотрансдукцию и пока не позволяет выявить ведущую роль какого-либо из них. Однако представляется очевидным, что внешняя механическая сила может приводить к конформационным изменениям одного или нескольких белков фокально-адгезивного комплекса, запуская далее каскад нижележащих сигнальных путей [6].

Механочувствительные ионные каналы

Второй претендент — механочувствительные ионные каналы. В настоящее время они являются самым малоизученным классом ионных каналов и представляют особый интерес для понимания механизмов клеточной сигнализации.

Впервые такие каналы были обнаружены в электрофизиологических экспериментах с использованием метода патч-кламп (patch-clamp). Было выявлено, что при растягивании мембраны меняется катион-транспортная активность механочувствительного канала — в результате конформационных изменений липидного бислоя [6, 7] или воротных доменов самогό канала.

Наглядно это было представлено на наиболее просто устроенных живых организмах — бактериях. А именно — на механочувствительном канале MscL, представляющем собой пору большого диаметра с низкой ионной селективностью. Эксперименты показали, что увеличение натяжения мембраны, контролируемое путем варьирования глубины всасывания в пипетку, вызывает увеличение проводимости канала в случае, когда силы, действующие на канал, превышают определенную величину [8]. Авторы отметили, что напряжение в этом случае оказывалось чуть ниже (10-2 Па·м), чем напряжение, приводящее к разрыву (6 × 10-2 Па·м), что может иметь большое физиологическое значение, например, при разбухании бактериальной клетки вследствие осмотического шока.

В эукариотических клетках в качестве механочувствительных каналов можно рассматривать эпителиальные натриевые каналы ENaCs (рис. 3) — семейство ионных каналов из суперсемейства дегенрин/ENaC (DEG/ENaC), — обнаруженные в клетках различных натрий-абсорбирующих типов эпителия [9].

Рисунок 3. Схема строения эпителиальных Na+-каналов. Предполагается, что каждая субъединица состоит из двух трансмембранных участков, выпетливания на поверхности клетки и N- и C-концевых доменов, находящихся внутри клетки. Рисунок из [9].

Накапливается всё больше доказательств того, что ENaC могут активироваться механическими силами; как минимум напряжение сдвига при ламинарном течении жидкости может быть адекватным стимулом, имеющим физиологическое значение [10, 11]. Также косвенным аргументом в пользу механочувствительности может служить тот факт, что гены этих высокоселективных Na+-каналов экспрессируются в тканях, которые наиболее подвержены механическим воздействиям, а именно — на которые действует напряжение сдвига: дистальный отдел нефрона [10, 12], эпителий легкого [13], сосудистая ткань [14–16], чувствительные нервные окончания, включая те, что участвуют в механосенсорных процессах [17]. Активность этих каналов служит лимитирующим фактором поглощения натрия и скорости трансэпителиального движения воды (осмоса) [18]. Таким образом, ENaC является регулятором транспорта ионов в почке, и именно с ним могут быть связаны механозависимые адаптивные ответы, существенные для обеспечения ионного гомеостаза.

Подмембранный цитоскелет

Третий претендент — подмембранный цитоскелет (рис. 4), роль которого в регуляции ионных каналов доказана в ряде исследований. Рассмотрим некоторые из них.

Рисунок 4. Схема, иллюстрирующая организацию примембранного актин-спектринового цитоскелета эритроцитов. Рисунок с сайта humbio.ru.

В эксперименте при обработке культуры клеток (например, К562) цитохалазином D* происходит активация натриевых каналов, а полимеризация актина на цитоплазматической стороне клеточной мембраны вызывает их инактивацию [19]. При этом в клетках линии К562 фрагментация актиновых филаментов, ассоциированных с плазматической мембраной, может быть основным фактором, влияющим на активность натриевых каналов в ответ на повышение внутриклеточной концентрации ионов кальция [20].

С помощью метода патч-кламп было показано, что актиновые микрофиламенты принимают участие в регуляции хлорных каналов [21, 22], Na+-K+-АТФазы [23], электровозбудимых натриевых каналов в клетках мозга [24], натриевых каналов в клетках реабсорбирующего эпителия [25].

Авторы работ, посвященных изучению богатых холестерином липидных микродоменов плазматической мембраны (рафтов) как фактора, определяющего активность интегральных мембранных белков и ионных каналов [26–31], считают, что нарушения структуры рафтов, обусловленные снижением уровня мембранного холестерина, препятствуют реализации клеточных функций, включающих перестройки актиновой сети [29, 32].

В клетках с пониженным содержанием холестерина наблюдалось повышение порога активации и снижение вероятности открытого состояния каналов. При этом измерения механозависимых токов в разных условиях и комплементарные данные флуоресцентной микроскопии свидетельствовали о том, что подавление активности механочувствительных каналов опосредовано реорганизацией актина, инициированной, по мнению ученых, нарушением целостности рафтов из-за снижения уровня мембранного холестерина [33, 34].

Внутриклеточные структуры

И последний по счету, но не по значимости претендент — внутриклеточные структуры. Хорошо известно, что внешнее силовое воздействие может привести к изменениям уровня экспрессии генов. При приложении силы через мембраносвязанные рецепторы в некоторых случаях деформируется ядро [35], то есть можно предположить прямое влияние внешних сил на хроматин, а значит, и на уровень экспрессии генов [36]. Силы в этом случае могут трансдуцироваться через цитоскелетную сеть к ядерной оболочке, а затем через ламининовую сеть (рис. 5) к хроматину. Кроме того, внешнее силовое воздействие может передаваться на микротрубочки, приводить к их разрыву, деполимеризации и запуску сигнальных путей [37].

Рисунок 5. Схема полимеризации ламинина в базальной мембране. Ламинин связан по меньшей мере с тремя другими белками внеклеточного матрикса, образуя сеть в базальной ламине. Ламинины также связываются с интегриновыми рецепторами, которые вытягиваются от поверхности клеток, прикрепленных к базальной ламине. Рисунок из [9].

Следует отметить, что конформационные изменения различных белков могут претендовать на роль механосенсора, но прямых доказательств этого практически нет. Хотя существует как минимум один пример того, что биохимическая реакция обусловлена конформационными изменениями белков. Свернутые домены фибронектина могут быть выявлены при действии силы, растягивающей молекулу и провоцирующей формирование фибрилл. Этот процесс исследовался экспериментально, а также методами динамического молекулярного моделирования [38, 39], и в результате было показано, что сила 3–5 пН достаточна для разворачивания доменов, а дальнейшее увеличение силы до 5 пН может привести к удлинению исходной молекулы в пять раз [39, 40]. Эти уровни силы сравнимы с теми, которые, согласно оценкам, могут инициировать механотрансдукцию.

По сути, любой белок, участвующий в механотрансдукции от внеклеточных контактов внутрь клетки, может быть механосенсором и стимулировать разворачивание интегринов [41] и ассоциированных с ними белков [42].

Согласно теории Дональда Ингбера [43], цитоскелет в целом реагирует на изменения механического напряжения, передающиеся посредством внеклеточного матрикса и ассоциированных с ним интегринов, реорганизуя микрофиламенты и микротрубочки. В то же время кортикальный цитоскелет, как жесткий 3D-каркас, поддерживающий плазматическую мембрану, находится в напряженном состоянии во внешнем механическом поле [44]. Поэтому можно полагать, что практически все вероятные механизмы первичной механотрансдукции зависят от состояния подмембранного кортикального цитоскелета, целостность которого обусловливает механические свойства (жесткость) того или иного типа клеток.

Заключение

Участие клеточной механочувствительности во множестве физиологических процессов и довольно скудное количество безусловно установленных фактов делают рассматриваемую область исследований очень привлекательной для молекулярных биологов, цитологов и физиологов. Механозависимая регуляция процессов жизнедеятельности клетки может по праву считаться новым механизмом негуморальной регуляции. Выяснение вклада каждого возможного механосенсора будет способствовать расшифровке основ морфогенеза живого организма на ранних стадиях развития и при различных внешних параметрах.

  1. Огнева И.В. (2015). Раннее развитие в условиях микрогравитации. Биофизика60, 1024–1035;
  2. Dennerll T.J., Joshi H.C., Steel V.L., Buxbaum R.E., Heidemann S.R. (1988). Tension and compression in the cytoskeleton of PC-12 neurites. II: Quantitative measurements. J. Cell Biol. 107, 665–674;
  3. Putnam A.J., Schultz K., Mooney D.J. (2001). Control of microtubule assembly by extracellular matrix and externally applied strain. Am. J. Physiol. Cell Physiol. 280, C556–C564;
  4. Takada Y., Ye X., Simon S. (2007). The integrins. Genome Biol. 8, 215;
  5. Thomas S. and Baumgart D.C. (2012). Targeting leukocyte migration and adhesion in Crohn’s disease and ulcerative colitis. Inflammopharmacology20, 1–18;
  6. Sukharev S. and Corey D.P. (2004). Mechanosensitive channels: multiplicity of families and gating paradigms. Sci. STKE. 219, re4;
  7. Maroto R., Raso A., Wood T.G., Kurosky A., Martinac B., Hamill O.P. (2005). TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat. Cell Biol. 7, 179–185;
  8. Hamill O.P. and Martinac B. (2001). Molecular basis of mechanotransduction in living cells. Physiol. Rev. 81, 685–740;
  9. Льюин Б. Клетки / под ред. Ченцова Ю.С. М.: БИНОМ. Лаборатория знаний, 2011. — 951 с.;
  10. Satlin L.M., Sheng S., Woda C.B., Kleyman T.R. (2001). Epithelial Na(+) channels are regulated by flow. Am. J. Physiol. Renal. Physiol. 280, F1010–F1018;
  11. Carattino M.D., Sheng S., Kleyman T.R. (2004). Epithelial Na+ channels are activated by laminar shear stress. J. Biol. Chem. 279, 4120–4126;
  12. Prasad R.M., Jin X., Nauli S.M. (2014). Sensing a sensor: identifying the mechanosensory function of primary cilia. Biosensors (Basel). 4, 47–62;
  13. Tarran R., Button B., Picher M., Paradiso A.M., Ribeiro C.M., Lazarowski E.R. et al. (2005). Normal and cystic fibrosis airway surface liquid homeostasis. The effects of phasic shear stress and viral infections. J. Biol. Chem. 280, 35751–35759;
  14. Drummond H.A., Welsh M.J., Abboud F.M. (2001). ENaC subunits are molecular components of the arterial baroreceptor complex. Ann. NY Acad. Sci940, 42–47;
  15. Drummond H.A., Gebremedhin D., Harder D.R. (2004). Degenerin/epithelial Na+ channel proteins: components of a vascular mechanosensor. Hypertension44, 643–648;
  16. Jernigan N.L. and Drummond H.A. (2005). Vascular ENaC proteins are required for renal myogenic constriction. Am. J. Physiol. Renal. Physiol. 289, F891–F901;
  17. Drummond H.A., Abboud F.M., Welsh M.J. (2000). Localization of beta and gamma subunits of ENaC in sensory nerve endings in the rat foot pad. Brain Res. 884, 1–12;
  18. Althaus M., Bogdan R., Clauss W.G., Fronius M. (2007). Mechano-sensitivity of epithelial sodium channels (ENaCs): laminar shear stress increases ion channel open probability. FASEB J. 21, 2389–2399;
  19. Negulyaev Y.A., Vedernikova E.A., Maximov A.V. (1996). Disruption of actin filaments increases the activity of sodium-conducting channels in human myeloid leukemia cells. Mol. Biol. Cell. 7, 1857–1864;
  20. Vedernikova E.A., Maksimov A.V., Neguliaev Iu.A. (1997). Functional properties and cytoskeletal-dependent regulation of sodium channels in leukemia cell membranes. Tsitologiia39, 1142–1151;
  21. Suzuki M., Miyazaki K., Ikeda M., Kawaguchi Y., Sakai O. (1993). F-actin network may regulate a Cl- channel in renal proximal tubule cells. J. Membr. Biol. 134, 31–39;
  22. Одна последовательность — одна структура: был ли Анфинсен неправ?;
  23. Devarajan P., Scaramuzzino D.A., Morrow J.S. (1995). Ankyrin binds to two distinct cytoplasmic domains of Na,K-ATPase alpha subunit. PNAS. 91, 2965–2969;
  24. Srinivasan Y., Elmer L., Davis J., Bennett V., Angelides K. (1988). Ankyrin and spectrin associate with voltage-dependent sodium channels in brain. Nature333, 177–180;
  25. Benos D.J., Awayda M.S., Ismailov I.I., Johnson J.P. (1995). Structure and function of amiloride-sensitive Na+ channels. J. Membr. Biol. 143, 1–18;
  26. Harder T. and Simons K. (1999). Clusters of glycolipid and glycosylphosphatidylinositol-anchored proteins in lymphoid cells: accumulation of actin regulated by local tyrosine phosphorylation. Eur. J. Immunol. 29, 556–562;
  27. Brown D.A. and London E. (2000). Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 275, 17221–17224;
  28. Nebl T., Pestonjamasp K.N., Leszyk J.D., Crowley J.L., Oh S.W., Luna E.J. (2002). Proteomic analysis of a detergent-resistant membrane skeleton from neutrophil plasma membranes. J. Biol. Chem. 277, 43399–43409;
  29. Brown D.A. (2006). Lipid rafts, detergent-resistant membranes, and raft targeting signals. Physiology (Bethesda). 21, 430–439;
  30. Levitan I., Christian A.E., Tulenko T.N., Rothblat G.H. (2000). Membrane cholesterol content modulates activation of volume-regulated anion current in bovine endothelial cells. J. Gen. Physiol. 115, 405–416;
  31. Shlyonsky V.G., Mies F., Sariban-Sohraby S. (2003). Epithelial sodium channel activity in detergent-resistant membrane microdomains. Am. J. Physiol. Renal. Physiol. 284, F182–F188;
  32. Edidin M. (2003). The state of lipid rafts: from model membranes to cells. Annu. Rev. Biophys. Biomol. Struct. 32, 257–283;
  33. Sudarikova A.V., Negulyaev Y.A., Morachevskaya E.A. (2006). Cholesterol depletion affects mechanosensitive channel gating coupled with F-actin rearrangement. Proc. Physiol. Soc. 95–96;
  34. Morachevskaya E., Sudarikova A., Negulyaev Y. (2007). Mechanosensitive channel activity and F-actin organization in cholesteroldepleted human leukaemia cells. Cell Biol. Int. 31, 374–381;
  35. Maniotis A.J., Chen C.S., Ingber D.E. (1997). Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. PNAS. 94, 849–854;
  36. Huang H., Kamm R.D., Lee R.T. (2004). Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am. J. Physiol. Cell Physiol. 287, C1–C11;
  37. http://biomolecula.ru#;
  38. Craig D., Krammer A., Schulten K., Vogel V. (2001). Comparison of the early stages of forced unfolding for fibronectin type III modules. PNAS. 98, 5590–5595;
  39. Gao M., Craig D., Vogel V., Schulten K. (2002). Identifying unfolding intermediates of FN-III(10) by steered molecular dynamics. J. Mol. Biol. 323, 939–950;
  40. Vogel V., Thomas W.E., Craig D.W., Krammer A., Baneyx G. (2001). Structural insights into the mechanical regulation of molecular recognition sites. Trends Biotechnol. 19, 416–423;
  41. Chicurel M.E., Singer R.H., Meyer C.J., Ingber D.E. (1998). Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions. Nature. 392, 730–733;
  42. Zhong C., Chrzanowska-Wodnicka M., Brown J., Shaub A., Belkin A.M., Burridge K. (1998). Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. J. Cell Biol. 141, 539–551;
  43. Ingber D.E. (2006). Cellular mechanotransduction: putting all the pieces together again. FASEB J. 20, 811–827;
  44. Vera C., Skelton R., Bossens F., Sung L.A. (2005). 3-D nanomechanics of an erythrocyte junctional complex in equibiaxial and anisotropic deformations. Ann. Biomed. Eng. 33, 1387–1404..

biomolecula.ru

14.3 Современные представления о строении и функции мембран. Ионные каналы мембран. Ионные градиенты клетки, механизмы из возникновения.

Функции: 1. Барьерная – мембрана при помощи соответствующих механизмов участвует в создании концентрационных градиентов, препятствуя свободной диффузии.

2.Регуляторная функция клеточной мембраны заключается в тонкой регуляции внутриклеточного содержимого и внутриклеточных реакций за счет рецепции внеклеточных биологически активных веществ, что приводит к изменению активности ферментных систем мембраны и запуску механизмов вторичных «месенджеров» («посредников»).

3.Преобразование внешних стимулов неэлектрической природы в электрические сигналы (в рецепторах).

4.Высвобождение нейромедиаторов в синаптических окончаниях.

Жидкостно-мозаичная модель Сингера и Николсона:

В фосфолипидном бислое интегрированы глобулярные белки, полярные участки которых образуют гидрофильную поверхность в водной фазе. Эти интегрированные белки выполняют различные функции, в том числе рецепторную, ферментативную, образуют ионные каналы, являются мембранными насосами и переносчиками ионов и молекул.

Некоторые белковые молекулы свободно диффундируют в плоскости липидного слоя; в обычном состоянии части белковых молекул, выходящие по разные стороны клеточной мембраны, не изменяют своего положения.

Особая морфология клеточных мембран определяет их электрические характеристики, среди которых наиболее важными являются емкость и проводимость.

Емкостные свойства в основном определяются фосфолипидным бислоем, который непроницаем для гидратированных ионов и в то же время достаточно тонок (около 5 нм), чтобы обеспечивать эффективное разделение и накопление зарядов и электростатическое взаимодействие катионов и анионов

Проводимость (g) — величина, обратная электрическому сопротивлению и равная отношению величины общего трансмембранного тока для данного иона к величине, обусловившей его трансмембранной разности потенциалов.

Строение и функции ионных каналов. Ионы Na+, K+, Са2+, Сl- проникают внутрь клетки и выходят наружу через специальные, заполненные жидкостью каналы. Размер каналов довольно мал (диаметр 0,5—0,7 нм).

Рассмотрим принцип работы ионных каналов на примере натриевого канала. Полагают, что в состоянии покоя натриевый канал закрыт. При деполяризации клеточной мембраны до определенного уровня происходит открытие m-активационных ворот (активация) и усиление поступления ионов Na+ внутрь клетки. Через несколько миллисекунд после открытия m-ворот происходит закрытие п-ворот, расположенных у выхода натриевых каналов (инактивация) (рис. 2.4). Инактивация развивается в клеточной мембране очень быстро и степень инактивации зависит от величины и времени действия деполяризующего стимула.

При генерации одиночного потенциала действия в толстом нервном волокне изменение концентрации ионов Na+ во внутренней среде составляет всего 1/100000 от внутреннего содержания ионов Na гигантского аксона кальмара. Однако для тонких нервных волокон это изменение концентрации может быть весьма существенным.

Кроме натриевых, в клеточных мембранах установлены другие виды каналов, избирательно проницаемых для отдельных ионов: К+, Са2+

Ходжкин и Хаксли сформулировали принцип «независимости» каналов, согласно которому потоки натрия и калия через мембрану независимы друг от друга.

Свойство проводимости различных каналов неодинаково. В частности, для калиевых каналов процесс инактивации, как для натриевых каналов, не существует. Имеются особые калиевые каналы, активирующиеся при повышении внутриклеточной концентрации кальция и деполяризации клеточной мембраны. Активация калий-кальцийзависимых каналов ускоряет реполяризацию, тем самым восстанавливая исходное значение потенциала покоя.

Особый интерес представляют кальциевые каналы.

Входящий кальциевый ток, как правило, недостаточно велик, чтобы нормально деполяризовать клеточную мембрану. Чаще всего поступающий в клетку кальций выступает в роли вторичного посредника. Активация кальциевых каналов обеспечивается деполяризацией клеточной мембраны, например входящим натриевым током.

Процесс инактивации кальциевых каналов достаточно сложен. С одной стороны, повышение внутриклеточной концентрации свободного кальция приводит к инактивации кальциевых каналов. С другой стороны, белки цитоплазмы клеток связывают кальций, что позволяет поддерживать длительное время стабильную величину кальциевого тока, хотя и на низком уровне; при этом натриевый ток полностью подавляется. Кальциевые каналы играют существенную роль в клетках сердца.

studfile.net

14.3 Современные представления о строении и функции мембран. Ионные каналы мембран. Ионные градиенты клетки, механизмы из возникновения.

Функции: 1. Барьерная – мембрана при помощи соответствующих механизмов участвует в создании концентрационных градиентов, препятствуя свободной диффузии.

2.Регуляторная функция клеточной мембраны заключается в тонкой регуляции внутриклеточного содержимого и внутриклеточных реакций за счет рецепции внеклеточных биологически активных веществ, что приводит к изменению активности ферментных систем мембраны и запуску механизмов вторичных «месенджеров» («посредников»).

3.Преобразование внешних стимулов неэлектрической природы в электрические сигналы (в рецепторах).

4.Высвобождение нейромедиаторов в синаптических окончаниях.

Жидкостно-мозаичная модель Сингера и Николсона:

В фосфолипидном бислое интегрированы глобулярные белки, полярные участки которых образуют гидрофильную поверхность в водной фазе. Эти интегрированные белки выполняют различные функции, в том числе рецепторную, ферментативную, образуют ионные каналы, являются мембранными насосами и переносчиками ионов и молекул.

Некоторые белковые молекулы свободно диффундируют в плоскости липидного слоя; в обычном состоянии части белковых молекул, выходящие по разные стороны клеточной мембраны, не изменяют своего положения.

Особая морфология клеточных мембран определяет их электрические характеристики, среди которых наиболее важными являются емкость и проводимость.

Емкостные свойства в основном определяются фосфолипидным бислоем, который непроницаем для гидратированных ионов и в то же время достаточно тонок (около 5 нм), чтобы обеспечивать эффективное разделение и накопление зарядов и электростатическое взаимодействие катионов и анионов

Проводимость (g) — величина, обратная электрическому сопротивлению и равная отношению величины общего трансмембранного тока для данного иона к величине, обусловившей его трансмембранной разности потенциалов.

Строение и функции ионных каналов. Ионы Na+, K+, Са2+, Сl- проникают внутрь клетки и выходят наружу через специальные, заполненные жидкостью каналы. Размер каналов довольно мал (диаметр 0,5—0,7 нм).

Рассмотрим принцип работы ионных каналов на примере натриевого канала. Полагают, что в состоянии покоя натриевый канал закрыт. При деполяризации клеточной мембраны до определенного уровня происходит открытие m-активационных ворот (активация) и усиление поступления ионов Na+ внутрь клетки. Через несколько миллисекунд после открытия m-ворот происходит закрытие п-ворот, расположенных у выхода натриевых каналов (инактивация) (рис. 2.4). Инактивация развивается в клеточной мембране очень быстро и степень инактивации зависит от величины и времени действия деполяризующего стимула.

При генерации одиночного потенциала действия в толстом нервном волокне изменение концентрации ионов Na+ во внутренней среде составляет всего 1/100000 от внутреннего содержания ионов Na гигантского аксона кальмара. Однако для тонких нервных волокон это изменение концентрации может быть весьма существенным.

Кроме натриевых, в клеточных мембранах установлены другие виды каналов, избирательно проницаемых для отдельных ионов: К+, Са2+

Ходжкин и Хаксли сформулировали принцип «независимости» каналов, согласно которому потоки натрия и калия через мембрану независимы друг от друга.

Свойство проводимости различных каналов неодинаково. В частности, для калиевых каналов процесс инактивации, как для натриевых каналов, не существует. Имеются особые калиевые каналы, активирующиеся при повышении внутриклеточной концентрации кальция и деполяризации клеточной мембраны. Активация калий-кальцийзависимых каналов ускоряет реполяризацию, тем самым восстанавливая исходное значение потенциала покоя.

Особый интерес представляют кальциевые каналы.

Входящий кальциевый ток, как правило, недостаточно велик, чтобы нормально деполяризовать клеточную мембрану. Чаще всего поступающий в клетку кальций выступает в роли вторичного посредника. Активация кальциевых каналов обеспечивается деполяризацией клеточной мембраны, например входящим натриевым током.

Процесс инактивации кальциевых каналов достаточно сложен. С одной стороны, повышение внутриклеточной концентрации свободного кальция приводит к инактивации кальциевых каналов. С другой стороны, белки цитоплазмы клеток связывают кальций, что позволяет поддерживать длительное время стабильную величину кальциевого тока, хотя и на низком уровне; при этом натриевый ток полностью подавляется. Кальциевые каналы играют существенную роль в клетках сердца.

studfile.net

1.3. Биологические мембраны и ионные каналы

Биологические мембраны – это функционально активные структуры клеток, ограничивающие цитоплазму и большинство внутриклеточных структур; образуют единую внутриклеточную систему канальцев, складок и замкнутых полостей.

Структурная основа мембраны – двойной слой фосфолипидов, в который встроены мембранные белки. Толщина клеточных мембран 6-12 нм. Молекулы липидов амфотерны. Своими гидрофильными частями они обращены в сторону водной среды (межклеточная жидкость и цитоплазма), гидрофобные части молекул направлены внутрь фосфолипидного бислоя. Такая структура идеально подходит для раздела внеклеточной и внутриклеточной фаз.

Белки, интегрированные в двойной слой фосфолипидов своими полярными участками, образуют гидрофильную поверхность в водной фазе. Они выполняют различные функции: рецепторную, ферментативную, образуют ионные каналы, являются мембранными насосами и переносчиками ионов и молекул.

Большинство наших знаний об устройстве ионного канала, является результатом функциональной реконструкции. Каждый канал имеет устье, селективный фильтр, ворота и механизм управления воротами.

Часть каналов являются электроуправляемыми, т.е. управляются за счет разности потенциалов на мембране (потенциал-зависимые ионные каналы). Для этого рядом с каналом имеется электрический сенсор, который в зависимости от величины мембранного потенциала либо открывает ворота каналов, либо держит их закрытыми.

Второй вариант ионных каналов – рецептороуправляемые. Ворота управляются за счет рецептора, расположенного на поверхности мембраны (открываются при взаимодействии медиатора с рецептором). В некоторых рецептороуправляемых каналах между рецептором и воротным механизмом имеется промежуточная стадия (посредник типа цАМФ, протеинкиназы и т.д.)

Ионные каналы обеспечивают два важных свойства мембраны: селективность и проводимость.

Селективность – или избирательность канала обеспечивается его особой белковой структурой, геометрией канала.

Например, диаметр иона натрия – 0,19 нм, вместе с гидратной оболочкой он становится около 0,3 нм. Устье натриевого канала 0,3 – 0,5 нм. Чтобы пройти через канал (особенно через селективный фильтр), ион натрия или другой ион должен освободиться от гидратной оболочки и только в «голом» виде может пройти через канал. Слишком большой ион не может войти в устье, слишком маленький не способен отдать гидратную оболочку в селективном фильтре, поэтому не может выскочить из канала.

Натриевые каналы (рис. 6) имеют ворота 2-х типов – активационные (m-ворота) и инактивационные (h-ворота). В условиях покоя активационные ворота закрыты, но готовы в любую минуту открыться, а инактивационные – открыты. При снижении МП (деполяризация до 60 мВ) активационные ворота открываются и впускают ионы натрия в клетку, но вскоре начинают закрываться инактивационные ворота (происходит инактивация натриевых каналов). Некоторое время спустя закрываются активационные ворота, открываются инактивационные, и канал готов к новому циклу. Канал блокируется тетродотоксином, местными анестетиками (новокаин и др.).

Рис. 6. Работа натриевых каналов и «воротных» механизмов.

А – в покое m-ворота закрыты; Б – при возбужденииm-ворота открыты; В – закрытиеh-ворот (инактивация) при деполяризации.

Калиевые каналы тоже достаточно селективны – в основном пропускают ионы калия. Блокируются тетраэтиламмонием. Процессы инактивации у них выражены слабо. Зато имеются особые калиевые каналы, активирующиеся при повышении внутриклеточной концентрации кальция и деполяризации клеточной мембраны. Активация калий-калльцийзависимых каналов ускоряет реполяризацию (восстановление МП покоя).

Кальциевые каналы. Входящий кальциевый ток недостаточно велик, чтобы нормально деполяризовать клеточную мембрану. Кальций выступает в роли вторичного

посредника (мессенджера). Активация кальциевых каналов обеспечивается деполяризацией клеточной мембраны, напр., входящим натриевым током. Инактивация кальциевых каналов происходит при повышении внутриклеточной концентрации свободного кальция. Однако белки цитоплазмы связывают кальций, что позволяет некоторое время поддерживать стабильную величину кальциевого тока, хотя и на низком уровне; при этом натриевый ток полностью подавляется. Блокируются кальциевые каналы ионами марганца, никеля, кадмия (2-хвалентные ионы), а также лекарственными веществами (верапамил).

Различают пассивный (без затрат энергии) и активный (энергозависимый) транспорт ионов через мембраны.

Пассивный идет за счет простой и облегченной диффузии.

Простая диффузия идет в соответствии с законом Фика – по химическому, электрохимическому или осмотическому градиенту. Напр., в клетке натрия 14 ммоль, а в среде 140 ммоль, в этом случае пассивный поток должен быть направлен в клетку.

Для пассивной простой диффузии вещество должно быть жирорастворимым. Гидрофильные вещества в фосфолипидном бислое мембраны пройти не могут.

Облегченная диффузия происходит или при наличии специализированных каналов или с участием переносчиков, которые специфически связываются с переносимой молекулой, а затем способствуют ее переносу по градиенту концентрации.

Активный транспорт ионов насосами клеточных мембран обеспечивает поддержание ионных градиентов по обе стороны мембраны. Энергия затрачивается на перенос данного вещества против градиента его концентрации.

Доказано участие в активном транспорте ионов специализированных ферментных систем – АТФ-аз, которые осуществляют гидролиз АТФ. Различают:

Натрий–калиевая–АТФ–аза («натриевый насос») обнаружена в мембранах клеток всех животных, растений и микроорганизмов. Это мембранный белок, имеющий два центра связывания ионов. Один из них (натриевый) расположен на внутренней поверхности клеточной мембраны, второй (калиевый) – на ее внешней поверхности. Специфическим ингибитором фермента является сердечный гликозид – строфантин (уабаин), блокирующий работу натриевого насоса. Гидролиз одной молекулы АТФ сопровождается выведением из клетки трех ионов натрия и закачиванием в клетку двух ионов калия. При увеличении количества ионов калия во внеклеточной среде или ионов натрия внутри клетки работа насоса усиливается.

Кальциевая–АТФ-аза («кальциевый насос») наиболее широко распространена в мембранах саркоплазматического ретикулума мышечных клеток.

Протонная–АТФ-аза («протонный насос») – в мембранах митохондрий.

studfile.net

2.6.4. Ионные каналы

Ионные каналы образованы белками, они весьма разнообраз­ны по устройству и механизму действия. Известно более 50 кана­лов различных клеток, каждая нервная клетка содержит более пя­ти разных каналов.

А. Классификация ионных каналов. Классифицируют ионные каналы по нескольким признакам.

  1. По возможности управления функцией различают неуправ­ляемые (каналы утечки ионов) и управляемые каналы. Через не­управляемые каналы ионы перемещаются постоянно, но медленно, естественно, при наличии электрохимического гради­ента, как и в случае быстрого перемещения ионов по управляе­мым каналам. Последние могут быть быстрыми и медленными. Потенциал действия в нейроне возникает в основном вследствие активации быстрых Na- и К-каналов. Управляемые кана­лы имеют ворота с механизмами их управления, поэтому ионы через них могут проходить только при открытых воротах.

  2. В зависимости от стимула, активирующего или инактиви-рующего управляемые ионные каналы, основными каналами нейро­нов ЦНС являются потенциалчувствительные и хе-мочувствительные каналы. При взаимодействии медиа­тора (лиганда) с рецепторами хемочувствительного канала, расположенного на поверхности клеточной мембраны, может про­исходить открытие его ворот, поэтому хемочувствительный канал называют также рецепторуправляемым каналом. Лиганд - это био­логически активное вещество или фармакологический препарат, активирующий или блокирующий рецептор. Открытие хемочувст-вительных каналов происходит в результате конформационных из­менений рецепторного комплекса. Ворота потенциалзависимых каналов открываются и закрываются при изменении величины мембранного потенциала. Поэтому в конструкции их воротного механизма должны быть частицы, несущие электрический заряд.

  3. В зависимости от селективности различают ионоселектив-ные каналы, пропускающие только один ион, и каналы, не обла­дающие селективностью. В нейронах имеются Na-, К-, Са- и С1­селективные каналы. Есть каналы, пропускающие несколько ио­нов, например Na+, К+ и Са2+, т.е. не обладающие селективно­стью. Наиболее высока степень селективности потенциалчувстви-тельных (потенциалзависимых) каналов, несколько ниже она у хемочувствительных (рецепторзависимых) каналов, постсинапти-ческих мембран, через каналы которых могут одновременно про­ходить ионы Na+n К+.

4. Для одного и того же иона может быть несколько видов ка­налов. Наиболее важными из них для формирования биопотен­циалов являются следующие.

Каналы для ионов К+. Калиевые неуправляемые каналы покоя (каналы утечки), через которые постоянно выходит К+ из клетки, что является главным фактором в формировании мембранного потен­циала (потенциала покоя). Потенциалчувствительные управляемые К-каналы, сравнительно медленно активирующиеся при возбужде­нии клетки в фазу деполяризации с последующим ускорением акти­вации, что обеспечивает быстрый выход ионов К+ из клетки и ре-поляризацию ее (см. раздел 3.4).

Каналы для ионов Na+. Они бывают быстрые и медленные (утечки). Быстрые Na-каналы потенциалчувствительны, быст­ро активируются при уменьшении мембранного потенциала, что обеспечивает вход иона Na+ в клетку во время ее возбуждения (восходящая часть). Затем эти каналы быстро инактивируются. Медленные неуправляемые Na-каналы - каналы утечки, через которые ион Na+ постоянно диффундирует в клетку и переносит с собой другие молекулы, например глюкозу, аминокислоты, моле­кулы-переносчики. Таким образом, Na-каналы утечки обеспечи­вают вторичный транспорт веществ и участие ионов Na+ в фор­мировании мембранного потенциала (см. раздел 3.3).

Б. Устройство ионных каналов и их функционирование. Кана­лы имеют устье и селективный фильтр, а управляемые каналы -и воротный механизм. Они заполнены жидкостью, размеры ка­налов 0,3-0,8 нм. Селективность ионных каналов определяется их размером и наличием в канале заряженных частиц. Эти час­тицы имеют заряд, противоположный заряду иона, который они притягивают, что обеспечивает проход иона через данный канал (одноименные заряды, как известно, отталкиваются). Через ион­ные каналы могут проходить и незаряженные частицы. Ионы, проходя через канал, должны избавиться от гидратной оболоч­ки, иначе их размеры будут больше размеров канала. Например, диаметр иона Na+ с гидратной оболочкой равен 0,3 нм, а без гидратной оболочки - 0,19 нм. Слишком мелкий ион, проходя через селективный фильтр, не может отдать гидратную оболоч­ку, поэтому он не может пройти через канал. Однако, повидимому, имеются и другие механизмы селективности клеточ­ной мембраны. Гипотеза «просеивания» не в состоянии объяс­нить, например, почему ион К+ не проходит через открытые Na-каналы в начале цикла возбуждения клетки, но тем не менее она даст удовлетворительное, а в некоторых случаях и абсолютно убедительное объяснение избирательной (селективной) прони­цаемости клеточных мембран для разных частиц и ионов.

В. Особенности функционирования различных видов управляе­мых каналов. Такие каналы отличаются по степени селективно­сти. Наиболее высока степень селективности потенциалчувстви-тельных (потенциалзависимых) каналов. У каналов разных видов может наблюдаться или отсутствовать взаимодействие между со­бой. Так, частичная деполяризация клеточной мембраны за счет активации хемочувствительных каналов может привести к акти­вации потенциалчувствительных каналов, например, для ионов Na+, что обеспечивает возбуждение нейрона. Однако активация потенциалчувствительных каналов не влияет на функцию хемо­чувствительных каналов нейронов.

Г. Ионные каналы блокируются специфическими веществами и фармакологическими препаратами. Новокаин, например, как ме­стный анестетик снимает болевые ощущения потому, что он, бло­кируя Na-каналы, прекращает проведение возбуждения по нерв­ным волокнам.

studfile.net

Эпителиальный натриевый канал — Википедия

Материал из Википедии — свободной энциклопедии

Эпителиальный натриевый канал — мембранный белок, проводящий ионы Li, Na и протоны. Он постоянно активен и, вероятно, является одним из самых избирательных ионных каналов. Натриевые каналы находятся на апикальных участках мембран клеток эпителия. Они играют важную роль в поддержании водно-солевого баланса в организме, у позвоночных контролируют обратное всасывание натрия в почках, прямой кишке, лёгких, потовых железах и пр., также участвуют во вкусовых ощущениях.

Белок состоит из трёх разных субъединиц. Судя по всему, он является гетеротримерным белком, похожим на недавно исследованный кислотный ионный канал, и принадлежит к тому же типу. Каждая из субъединиц состоит из двух проходящих сквозь мембрану спиралей и внеклеточной петли. N- и C-концы всех полипептидных цепей находятся в цитоплазме. Обычно белки, принадлежащие к этому типу, состоят из 510—920 аминокислотных остатков и сделаны из трансмембранных сегментов, внутриклеточных участков, больших внеклеточных петель и внутриклеточного «хвоста»

Все эпителиальные натриевые каналы состоят из пар трансмембранных сегментов, разделённых внеклеточной петлёй. В большинстве изученных на сегодняшний момент подобных белков внеклеточные участки содержат множество цистеиновых остатков. Считается, что они помогают регулировать активность канала.

Натриевый канал находится в апикальной мембране поляризованных эпителиальных клеток почек (особенно в извитых канальцах), лёгких и кишечника. Он необходим для транспорта ионов Na+ сквозь мембрану, эту задачу он выполняет совместно с натрий-калиевой АТФ-азой. Натриевый канал чрезвычайно важен для поддержания концентрации ионов Na+ и K+ . Его активность в кишечнике и почках можно регулировать при помощи триамтерена и амилорида, которые используются в медицине как диуретики. Также эти каналы присутствуют в клетках вкусовых рецепторов, где помогают чувствовать солёный вкус. Однако у человека он отвечает за восприятие вкуса менее, чем у некоторых других млекопитающих (например, грызунов)

Взаимодействие натриевого канала с CFTR — одна из причин муковисцидоза. CFTR — мембранный белок, ответственный за транспорт хлоридов, и неполадки в его работе вызывают муковисцидоз. В потовых железах натриевый канал и CFTR отвечают за всасывание солей, и CFTR стимулирует работу натриевого канала. Во время муковисцидоза CFTR-канал не работает, поэтому натриевый канал тоже выключается. Из-за этого пот пациента становится солонее. Подобное свойство помогает диагностировать заболевание. Везде, кроме потовых желез, CFTR ингибирует натриевый канал. Обычно хлорид-ион выделяется на слизистую, а натрий всасывается. Однако во время муковисцидоза хлорид не выделяется и не ингибируется. Поэтому всасывание натрия увеличивается. В результате низкого содержания солей в слизи она становится густой и липкой, с недостаточным содержанием воды. Это вызывает проблемы от затрудненного дыхания до предрасположенности к респираторным болезням. Амилорид и триамтерен блокируют работу натриевого канала.

  1. ^ Palmer LG (1987). «Ion selectivity of epithelial Na channels». J Membr Biol 96: 97-106. doi:10.1007/BF01869236. PMID 2439691.
  2. ^ a b Garty H (1994). «Molecular properties of epithelial, amiloride-blockab le Na+ channels». FASEB J. 8 (8): 522—528. PMID 8181670.
  3. ^ a b c Le T, Saier Jr MH (1996). «Phylogenetic characterization of the epithelial Na+ channel (ENaC) family». Mol. Membr. Biol. 13 (3): 149—157. PMID 8905643.
  4. ^ Lazdunski M, Waldmann R, Champigny G, Bassilana F, Voilley N (1995). «Molecular cloning and functional expression of a novel amiloride-sensitive Na+ channel». J. Biol. Chem. 270 (46): 27411-27414. doi:10.1074/jbc.270.46.27411. PMID 7499195.
  5. ^ Loffing J, Schild L (November 2005). «Functional domains of the epithelial sodium channel». J. Am. Soc. Nephrol. 16 (11): 3175-81. doi:10.1681/ASN.2005050456. PMID 16192417. http://jasn.asnjournals.org/cgi/pmidlookup?view=long&pmid=16192417.
  6. ^ Jasti J, Furukawa H, Gonzales EB, Gouaux E (2007). «Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH». Nature 449: 316—322. doi:10.1038/nature06163.
  7. ^ a b Snyder PM, McDonald FJ, Stokes JB, Welsh MJ (1994). «Membrane topology of the amiloride-sensitive epithelial sodium channel». J. Biol. Chem. 269 (39): 24379-24383. PMID 7929098.
  8. ^ Horisberger JD, Chraïbi A (2004). «Epithelial sodium channel: a ligand-gated channel?». Nephron Physiol 96 (2): p37-41. doi:10.1159/000076406. PMID 14988660. http://content.karger.com/produktedb/produkte.asp?typ=pdf&file=NEP2004096002037.
  9. ^ Ion Channel Diseases
  10. ^ Saxena A, Hanukoglu I, Strautnieks SS, Thompson RJ, Gardiner RM, Hanukoglu A. (1998). «Gene structure of the human amiloride-sensitive epithelial sodium channel beta subunit.». Biochem. Biophys. Res. Commun. 252: 208—213. doi:10.1006/bbrc.1998.9625.

ru.wikipedia.org


Смотрите также