Билипидный слой мембраны это


Клеточная мембрана — Википедия

У этого термина существуют и другие значения, см. Мембрана. Модель клеточной мембраны. Маленькие голубые и белые шарики — гидрофильные «головки» фосфолипидов, а присоединённые к ним линии — гидрофобные «хвосты». На рисунке показаны только интегральные мембранные белки (красные глобулы и жёлтые спирали). Жёлтые овальные точки внутри мембраны — молекулы холестерина. Жёлто-зелёные цепочки бусинок на наружной стороне мембраны — цепочки олигосахаридов, формирующие гликокаликс

Кле́точная мембра́на (также цитолемма, плазмалемма, или плазматическая мембрана) — эластическая молекулярная структура, состоящая из белков и липидов. Отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность; регулирует обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определённые условия среды.

Клеточная стенка, если таковая у клетки имеется (обычно есть у растительных, бактериальных и грибных клеток), покрывает клеточную мембрану.

Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») части. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Мембраны — структуры инвариабельные, весьма сходные у разных организмов. Некоторое исключение составляют археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет 7—8 нм.

Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погружённые одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов.

В 1925 году Гортер и Грендель с помощью осмотического "удара" получили так называемые «тени» эритроцитов — их пустые оболочки. Тени сложили в стопку и определили площадь их поверхности. Затем с помощью ацетона выделили из оболочек липиды и определили количество липидов на единицу площади эритроцита — этого количества хватило на сплошной двойной слой. Хотя этот эксперимент привёл исследователей к правильному выводу, ими было допущено несколько грубых ошибок — во-первых, с помощью ацетона нельзя выделить абсолютно все липиды, а во-вторых, площадь поверхности была определена неправильно, по сухому весу. В данном случае минус на минус дал плюс, соотношение определяемых показателей случайно оказалось верным и был открыт липидный бислой.

Эксперименты с искусственными билипидными плёнками показали, что они обладают высоким поверхностным натяжением, гораздо большим, чем в клеточных мембранах. То есть в них содержится что-то, что снижает натяжение — белки. В 1935 году Даниэлли и Доусон представили научному сообществу модель «сендвича», которая говорит о том, что в основе мембраны лежит липидный бислой, по обеим сторонам от которого находятся сплошные слои белков, внутри бислоя ничего нет. Первые электронно-микроскопические исследования 1950-х годов подтвердили эту теорию — на микрофотографиях были видны 2 электронно-плотных слоя — белковые молекулы и головки липидов и один электронно-прозрачный слой между ними — хвосты липидов. Дж. Робертсон сформулировал в 1960 году теорию унитарной биологической мембраны, в которой постулировалось трёхслойное строение всех клеточных мембран.

Но постепенно накапливались аргументы против «бутербродной модели»:

  • накапливались сведения о глобулярности плазматической мембраны;
  • оказалось, что структура мембраны при электронной микроскопии зависит от способа её фиксации;
  • плазматическая мембрана может различаться по структуре даже в одной клетке, например в головке, шейке и хвосте сперматозоида;
  • «бутербродная» модель термодинамически не выгодна — для поддержания такой структуры нужно затрачивать большое количество энергии, и протащить вещество через мембрану очень сложно;
  • количество белков, связанных с мембраной электростатически, очень небольшое, в основном белки очень тяжело выделить из мембраны, так как они погружены в неё.

Всё это привело к созданию в 1972 году С. Д. Сингером (S. Jonathan Singer) и Г. Л. Николсоном (Garth L. Nicolson) жидкостно-мозаичной модели строения мембраны. Согласно этой модели белки в мембране не образуют сплошной слой на поверхности, а делятся на интегральные, полуинтегральные и периферические. Периферические белки действительно находятся на поверхности мембраны и связаны с полярными головками мембранных липидов электростатичесткими взаимодействиями, но никогда не образуют сплошной слой. Доказательствами жидкостности мембраны служат методы FRAP, FLIP и соматическая гибридизация клеток, мозаичности — метод замораживания-скалывания, при котором на сколе мембраны видны бугорки и ямки, так как белки не расщепляются, а целиком отходят в один из слоёв мембраны.

  • Барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой[1]. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • Транспортная — через мембрану происходит транспорт веществ в клетку и из клетки[1]. Транспорт через мембрану обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов.
    Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортёры) и белки-каналы или путём эндоцитоза.
    При пассивном транспорте вещества пересекают липидный бислой без затрат энергии по градиенту концентрации (градиент концентрации указывает направление увеличения концентрации) путём диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.
    Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивает в клетку ионы калия (K+) и выкачивает из неё ионы натрия (Na+).
  • Матричная — обеспечивает определённое взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.
  • Механическая — обеспечивает автономность клетки, её внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечении механической функции имеют клеточные стенки, а у животных — межклеточное вещество.
  • Энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки.
  • Рецепторная — некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).
    Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.
  • Ферментативная — мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
  • Осуществление генерации и проведения биопотенциалов.
    С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.
  • Маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединёнными к ним разветвлёнными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Мембраны состоят из липидов трёх классов: фосфолипиды, гликолипиды и холестерол. Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим — более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку.

Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются. Рядом с белками находятся аннулярные липиды — они более упорядочены, менее подвижны, имеют в составе более насыщенные жирные кислоты и выделяются из мембраны вместе с белком. Без аннулярных липидов белки мембраны не работают.

Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, в наружном содержатся преимущественно фосфатидилинозитол, фосфатидилхолин, сфингомиелины и гликолипиды, во внутреннем — фосфатидилсерин, фосфатидилэтаноламин и фосфатидилинозитол. Переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп) затруднён, но может происходить спонтанно, примерно раз в 6 месяцев или с помощью белков-флиппаз и скрамблазы плазматической мембраны. Если в наружном слое появляется фосфатидилсерин, это является сигналом для макрофагов о необходимости уничтожения клетки.

Это замкнутые одиночные или связанные друг с другом участки цитоплазмы, отделённые от гиалоплазмы мембранами. К одномембранным органеллам относятся эндоплазматическая сеть, аппарат Гольджи, лизосомы, вакуоли, пероксисомы; к двумембранным — ядро, митохондрии, пластиды. Строение мембран различных органелл отличается по составу липидов и мембранных белков.

Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жирные кислоты, глицерол и ионы, причем сами мембраны в известной мере активно регулируют этот процесс — одни вещества пропускают, а другие нет. Существует четыре основных механизма для поступления веществ в клетку или вывода их из клетки наружу: диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, то есть не требуют затрат энергии; два последних — активные процессы, связанные с потреблением энергии.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами — интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.

  1. 1 2 Твердислов В. А., Яковенко Л. В. Физика биологических мембран // Школьникам о современной физике. Акустика. Теория относительности. Биофизика. - М., Просвещение, 1990. -ISBN 5-09-001323-3. - Тираж 200 000 экз. - С. 131-158
  • Антонов В. Ф., Смирнова Е. Н., Шевченко Е. В. Липидные мембраны при фазовых переходах. — М.: Наука, 1994.
  • Геннис Р. Биомембраны. Молекулярная структура и функции: перевод с англ. = Biomembranes. Molecular structure and function (by Robert B. Gennis). — 1-е издание. — М.: Мир, 1997. — ISBN 5-03-002419-0.
  • Иванов В. Г., Берестовский Т. Н. Липидный бислой биологических мембран. — М.: Наука, 1982.
  • Рубин А. Б. Биофизика, учебник в 2 тт. — 3-е издание, исправленное и дополненное. — М.: издательство Московского университета, 2004. — ISBN 5-211-06109-8.
  • Bruce Alberts, et al. Molecular Biology Of The Cell. — 5th ed. — New York: Garland Science, 2007. — ISBN 0-8153-3218-1. — учебник по молекулярной биологии на английском языке

ru.wikipedia.org

Органоиды клетки, подготовка к ЕГЭ по биологии

Органоиды (органеллы) клетки - специализированные структуры клетки, выполняющие различные жизненно необходимые функции. Особенно сложно устроены клетки простейших, где одна клетка составляет весь организм и выполняет функции дыхания, выделения, пищеварения и многие другие.

Органоиды клетки подразделяются на:

  • Немембранные - рибосомы, клеточный центр, микротрубочки, органоиды движения (жгутики, реснички)
  • Одномембранные - ЭПС, комплекс (аппарат) Гольджи, лизосомы и вакуоли
  • Двумембранные - ядро, пластиды, митохондрии

Прежде чем говорить об органоидах клетки, без которых невозможна ее жизнедеятельность, необходимо упомянуть о том, без чего вообще не существует клетки - о клеточной мембране. Клеточная мембрана ограничивает клетку от окружающего мира и формирует ее внутреннюю среду.

Клеточная мембрана (оболочка)

Запомните, что в отличие от клеточной стенки, которая есть только у растительных клеток и у клеток грибов (она придает им плотную, жесткую форму) клеточная мембрана есть у всех клеток без исключения! Этот важный момент объясню еще раз :) У клеток животных имеется только клеточная мембрана, а у клеток растений и грибов есть и клеточная стенка, и клеточная мембрана.

Клеточная мембрана представляет собой билипидный слой (лат. bi - двойной + греч. lipos - жир), который пронизывают молекулы белков.

Билипидный слой представлен двумя слоями фосфолипидов. Обратите внимание, что их гидрофобные концы обращены внутрь мембраны, а гидрофильные "головки" смотрят наружу. Билипидный слой насквозь пронизывают интегральные белки, частично - погруженные белки, имеются также поверхностно лежащие белки - периферические.

Белки принимают участие в:

  • Поддержании постоянства структуры мембраны
  • Рецепции сигналов из окружающей среды (химического раздражения)
  • Транспорте веществ через мембрану
  • Ускорении (катализе) реакций, которые ассоциированы с мембраной

Интегральные (пронизывающие) белки образуют каналы, по которым молекулы различных веществ могут поступать в клетку или удаляться из нее. "Заякоренные" молекулы олигосахаридов на поверхности клетки образуют гликокаликс, который выполняет рецепторную функцию, участвует в избирательном транспорте веществ через мембрану.

Теперь вы знаете, что гликокаликс - надмембранный комплекс, совокупность клеточных рецепторов, которые нужны клетке для восприятия регуляторных сигналов биологически активных веществ (гормонов, гормоноподобных веществ). Гормон избирателен, специфичен и присоединяется только к своему рецептору: меняется конформация молекулы рецептора и обмен веществ в клетке. Так гормоны регулируют жизнедеятельность клеток.

Вирусы и бактерии не являются исключением: они взаимодействуют только с теми клетками, на которых есть подходящие к ним рецепторы. Так вирус гриппа поражает преимущественно клетки слизистой верхних дыхательных путей. Однако если рецепторов нет, то вирус не может проникнуть в клетку, и организм приобретает невосприимчивость к инфекции. Вспомните врожденный иммунитет: именно по причине отсутствия рецепторов человек не восприимчив ко многим болезням животных.

Итак, вернемся к клеточной мембране. Ее можно сравнить со стенами помещения, в котором, вероятно, вы находитесь. Стены дома защищают его от ветра, дождя, снега и прочих факторов внешней среды. Рискну предположить, что в вашем доме есть окна и двери, которые по мере необходимости открываются и закрываются :) Так и клеточная мембрана может сообщать внутреннюю среду клетки с внешней средой: через мембрану вещества поступают в клетку и удаляются из нее.

Подведем итоги. Клеточная мембрана выполняет ряд важнейших функций:

  • Разделительная (барьерная) - образует барьер между внешней средой и внутренней средой клетки (цитоплазмой с органоидами)
  • Поддержание обмена веществ между внешней средой и цитоплазмой
  • Через мембрану по каналам кислород и питательные вещества поступают в клетку, а продукты жизнедеятельности - мочевина - удаляются из клетки во внешнюю среду.

  • Транспортная
  • Тесно связана с обменом веществ, однако здесь мне особенно хочется подчеркнуть варианты транспорта веществ через клетку. Выделяется два вида транспорта:

    • Пассивный - часто идет по градиенту концентрации, без затрат АТФ (энергии). Возможен путем осмоса, простой диффузии или облегченной (с участием белка-переносчика) диффузии.
    • Внутрь клетки с помощью осмоса поступает вода. Путем простой диффузии в клетку попадают O2, H2O, CO2, мочевина. Облегченная диффузия характерна для транспорта глюкозы, аминокислот.

    • Активный
    • Активный транспорт чаще происходит против градиента концентрации, в ходе него используются белки-переносчики и энергия АТФ. Ярким примером является натрий-калиевый насос, который накачивает ионы калия внутрь клетки, а ионы натрия выводит наружу. Это происходит против градиента концентрации, поэтому без затрат энергии (АТФ) не обойтись.

Внутрь клетки крупные молекулы попадают путем эндоцитоза (греч. endo — внутрь) двумя путями:

  • Фагоцитоз (греч. phago - ем + cytos - клетка) - поглощение твердых пищевых частиц и бактерий фагоцитами
  • Пиноцитоз (греч. pino - пью) - поглощение клеткой жидкости, захват жидкости клеточной поверхностью

Фагоцитоз был открыт И.И. Мечниковым, который создал фагоцитарную теорию иммунитета. Это теория гласит, что в основе иммунной системы нашего организма лежит явление фагоцитоза: попавшие в организм бактерии уничтожаются фагоцитами (T-лимфоцитами), которые переваривают их.

В ходе эндоцитоза мембрана сильно прогибается внутрь клетки, ее края смыкаются, захватывая бактерию, пищевые частицы или жидкость внутрь клетки. Образуется везикула (пузырек), который движется к пищеварительной вакуоли или лизосоме, где происходит внутриклеточное пищеварение.

Клетки многих органов, к частности эндокринных желез, которые выделяют в кровь гормоны, транспортируют синтезированные вещества к мембране и удаляют их из клетки с помощью экзоцитоза (от др.-греч. ἔξω - вне, снаружи). Таким образом, процессы экзоцитоза и эндоцитоза противоположны.

Клеточная стенка

Расположена снаружи клеточной мембраны. Присутствует только в клетках бактерий, растений и грибов, у животных отсутствует. Придает клетке определенную форму, направляет ее рост, придавая характерное строение всему организму. Клеточная стенка бактерий состоит из полимера муреина, у грибов - из хитина, у растений - из целлюлозы.

Цитоплазма

Органоиды клетки расположены в цитоплазме, которая состоит из воды, питательных веществ и продуктов обмена. В цитоплазме происходит постоянный ток веществ: поступившие в клетку вещества для расщепления необходимо доставить к органоидам, а побочные продукты - удалить из клетки.

Постоянное движение цитоплазмы поддерживает связь между органоидами клетки и обеспечивает ее целостность.

Прокариоты и эукариоты

Прокариоты (греч. πρό - перед и κάρυον - ядро) или доядерные - одноклеточные организмы, не обладающие в отличие от эукариот оформленным ядром и мембранными органоидами. У прокариот могут обнаруживаться только немембранные органоиды. Их генетический материал представлен в виде кольцевой молекулы ДНК - нуклеоида. К прокариотам относятся бактерии (в их числе цианобактерии), археи.

Эукариоты (греч. εὖ - хорошо + κάρυον - ядро) или ядерные - домен живых организмов, клетки которых содержат оформленное ядро. Растения, животные, грибы - относятся к эукариотам.

Немембранные органоиды
  • Рибосома
  • Очень мелкая органелла (около 20 нм), которая была открыта после появления электронного микроскопа. Состоит из двух субъединиц: большой и малой, в состав которых входят белки и рРНК (рибосомальная РНК), синтезируемая в ядрышке.

    Запомните ассоциацию: "Рибосома - фабрика белка". Именно здесь в ходе матричного биосинтеза - трансляции, с которой подробнее мы познакомимся в следующих статьях, на базе иРНК (информационной РНК) синтезируется белок - последовательность соединенных аминокислот в заданном иРНК порядке.

  • Микротрубочки и микрофиламенты
  • Микротрубочки являются внутриклеточными белковыми производными, входящими в состав цитоскелета. Они поддерживают определенную форму клетки, участвуют в процессе деления путем образования нитей веретена деления. Микротрубочки также образуют основу органоидов движения: жгутиков и ресничек.

    Микрофиламенты - тонкие длинные нитевидные структуры, состоящие из белка актина. Встречаются во всей цитоплазме, служат для создания тока цитоплазмы, принимают участие в движении клетки, в процессах эндо- и экзоцитоза.

  • Клеточный центр (центросома, от греч. soma - тело)
  • Этот органоид характерен только для животной клетки, в клетках грибов и высших растений отсутствует. Клеточный центр состоит из 9 триплетов микротрубочек (триплет - три соединенных вместе). Участвует в образовании нитей веретена деления, располагается на полюсах клетки.

  • Реснички и жгутики
  • Это органоиды движения, которые выступают над поверхностью клетки и имеют в основе пучок микротрубочек. Реснички встречаются только в клетках животных, жгутики можно обнаружить у животных, растений и бактерий.

Одномембранные органоиды
  • Эндоплазматическая сеть (ЭПС), эндоплазматический ретикулум (лат. reticulum - сеть)
  • ЭПС представляет собой систему мембран, пронизывающих всю клетку и разделяющих ее на отдельные изолированные части (компартменты). Это крайне важно, так как в разных частях клетки идут реакции, которые могут помешать друг другу, что нарушит процессы жизнедеятельности.

    Выделяют гладкую ЭПС и шероховатую ЭПС. Обе они выполняют функцию внутриклеточного транспорта веществ, однако между ними имеются различия. На мембранах гладкой ЭПС происходит синтез липидов, обезвреживаются вредные вещества. Шероховатая ЭПС синтезирует белок, так как имеет на мембранах многочисленные рибосомы (потому и называется шероховатой).

  • Комплекс (аппарат) Гольджи
  • Комплекс Гольджи состоит из трубочек, сети уплощенных канальцев (цистерн) и связанных с ними пузырьков. Располагается вокруг ядра клетки, внешне напоминает стопку блинов. Это - "клеточный склад". В нем запасаются жиры и углеводы, с которыми здесь происходят химические видоизменения.

    Модифицированные вещества упаковываются в пузырьки и могут перемещаться к мембране клетки, соединяясь с ней, они изливают свое содержимое во внешнюю среду. Можно догадаться, что комплекс Гольджи хорошо развит в клетках эндокринных желез, которые в большом количестве синтезируют и выделяют в кровь гормоны.

    В комплексе Гольджи появляются первичные лизосомы, которые содержат ферменты в неактивном состоянии.

  • Лизосома (греч. lisis - растворение + soma - тело)
  • Представляет собой мембранный пузырек, содержащий внутри ферменты (энзимы) - липазы, протеазы, фосфатазы. Лизосому можно ассоциировать с "клеточным желудком".

    Лизосома участвует во внутриклеточном пищеварении поступивших в клетку веществ. Сливаясь с фагосомой, первичная лизосома превращается во вторичную, ферменты активируются. После расщепления веществ образуется остаточное тельце - вторичная лизосома с непереваренными остатками, которые удаляются из клетки.

    Лизосома может переварить содержимое фагосомы (самое безобидное), переварить часть клетки или всю клетку целиком. В норме у каждой клетки жизненный цикл заканчивается апоптозом - запрограммированным процессом клеточной гибели.

    В ходе апоптоза ферменты лизосомы изливаются внутрь клетки, ее содержимое переваривается. Предполагают, что нарушение апоптоза в раковых клетках ведет к бесконтрольному росту опухоли.

  • Пероксисомы (лат. per — сверх, греч. oxys — кислый и soma — тело)
  • Пероксисомы (микротельца) содержат окислительно-восстановительные ферменты, которые разлагают H2O2 (пероксид водорода) на воду и кислород. Если бы пероксид водорода оставался неразрушенными, это приводило бы к серьезным повреждениям клетки.

  • Вакуоли
  • Вакуоли характерны для растительных клеток, однако встречаются и у животных (у одноклеточных - сократительные вакуоли). У растений вакуоли выполняют другие функции и имеют иное строение: они заполняются клеточным соком, в котором содержится запас питательных веществ. Снаружи вакуоль окружена тонопластом.

    Трудно переоценить значение вакуолей в жизнедеятельности растительной клетки. Вакуоли создают осмотическое давление, придают клетке форму.

    Примечательно, что по размеру вакуолей можно судить о возрасте клетки: молодые клетки имеют вакуоли небольшого размера, а в старых клетках вакуоли могут настолько увеличиваться, что оттесняют ядро и остальные органоиды на периферию.

Двумембранные органоиды
  • Ядро ("ядро" по лат. - nucleus, по греч. - karyon)
  • Важнейший компонент эукариотической клетки - оформленное ядро, которое у прокариот отсутствует. Внутренняя часть ядра представлена кариоплазмой, в которой расположен хроматин - комплекс ДНК, РНК и белков, и одно или несколько ядрышек.

    Ядрышко - место в ядре, где активно идет процесс матричного биосинтеза - транскрипция, с которым мы познакомимся подробнее в следующих статьях. В течение дня, наблюдая за одной и той же клеткой, можно увидеть разное количество ядрышек или не найти ни одного.

    Оболочка ядра состоит из двух мембран и пронизана большим количеством ядерных пор, через которые происходит сообщение между кариоплазмой и цитоплазмой. Главными функциями ядра является хранение, защита и передача наследственного материала дочерним клеткам.

    Замечу, что хромосомы видны только в момент деления клетки. Хромосомы представляют собой сильно спирализованные молекулы ДНК, связанные с белками.

    Я всегда рекомендую ученикам ассоциировать хромосому с мотком ниток: если все нитки обмотать вокруг одной оси, то они становятся мотком и хорошо видны (хромосомы - во время деления, спирализованное ДНК), если же клетка не делится, то нитки размотаны и разбросаны в один слой, хромосом не видно (хроматин - деспирализованное ДНК).

    Хромосомы отличаются друг от друга по строению, форме, размерам. Совокупность всех признаков (форма, число, размер) хромосом называется кариотип. Кариотип может быть представлен по-разному: существует кариотип вида, особи, клетки.

    Изучая кариотип человека, врач-генетик может обнаружить различные наследственные заболевания, к примеру, синдром Дауна - трисомия по 21-ой паре хромосом (должно быть 2 хромосомы, однако при синдроме Дауна их три).

  • Митохондрия
  • Органоид палочковидной формы. Митохондрию можно сравнить с "энергетической станцией". Если в цитоплазме происходит анаэробный этап дыхания (бескислородный), то в митохондрии идет более совершенный - аэробный этап (кислородный). В результате кислородного этапа (цикла Кребса) из двух молекул пировиноградной кислоты (образовавшихся из 1 глюкозы) получаются 36 молекул АТФ.

    Митохондрия окружена двумя мембранами. Внутренняя ее мембрана образует выпячивания внутрь - кристы, на которых имеется большое скопление окислительных ферментов, участвующих в кислородном этапе дыхания. Внутри митохондрия заполнена матриксом.

    Запомните, что особенностью этого органоида является наличие кольцевой молекулы ДНК - нуклеоида, и рибосом. То есть митохондрия обладает собственным генетическим материалом и возможностью синтеза белка, почти как отдельный организм.

    В связи с этим, митохондрия считается полуавтономным органоидом. Вероятнее всего, изначально митохондрии были самостоятельными организмами, однако со временем вступили в симбиоз с эукариотами и стали частью клетки.

    Митохондрий особенно много в клетках мышц, в том числе - в сердечной мышечной ткани. Эти клетки выполняют активную работу и нуждаются в большом количестве энергии.

  • Пластиды (др.-греч. πλαστός - вылепленный)
  • Двумембранные органоиды, встречающиеся только в клетках высших растений, водорослей и некоторых простейших. У подавляющего большинства животных пластиды отсутствуют. Подразделяются на три типа:

    • Хлоропласт (греч. chlōros - зелёный)
    • Получил свое название за счет содержащегося в нем зеленого пигмента - хлорофилла (греч. chloros - зеленый и phyllon - лист). Под двойной мембраной расположены тилакоиды, которые собраны в стопки - граны. Внутреннее пространство между тилакоидами и мембраной называется стромой.

      Запомните, что светозависимая (световая) фаза фотосинтеза происходит на мембранах тилакоидов, а темновая (светонезависимая) фаза - в строме хлоропласта за счет цикла Кальвина. Это очень пригодится при изучении фотосинтеза в дальнейшем.

      Так же, как и митохондрии, пластиды относятся к полуавтономным органоидам: в них имеется кольцевидная ДНК - нуклеоид, рибосомы.

    • Хромопласты (греч. chromos – краска)
    • Пластиды, которые содержат пигменты каратиноиды в различных сочетаниях. Сочетание пигментов обуславливает красную, оранжевую или желтую окраску. Находятся в плодах, листьях, лепестках цветков.

      Хромопласты могут развиваться из хлоропластов: во время созревания плодов хлоропласты теряют хлорофилл и крахмал, в них активируется биосинтез каротиноидов.

    • Лейкопласты (др.-греч. λευκός — белый )
    • Не содержат пигментов, образуются в запасающих частях растения (клубни, корневища). В лейкопластах накапливается крахмал, липиды (жиры), пептиды (белки). На свету лейкопласты могут превращаться в хлоропласты и запускать процесс фотосинтеза.

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

studarium.ru

Глава 12. Общие свойства биологических мембран

Все без исключения клеточные мембраны построены по общему принципу: это тонкие липопротеидные пленки, состоящие из двойного слоя липидных молекул, в который включены молекулы белка. В весовом отношении в зависимости от типа мембран на долю липидов приходится 25-60%, на долю белков 40-75%. В состав многих мембран входят углеводы, количество которых может достигать 2-10%.

Структурной основой мембран является двойной слой липидов

К липидам относится большая группа органических веществ, обладающих плохой растворимостью в воде (гидрофобность) и хорошей растворимостью в органических растворителях (липофильность). Состав липидов, входящих в мембраны клетки, очень разнообразен (рис. 116). Характерными представителями липидов, встречающихся в клеточных мембранах, являются фосфолипиды (глицерофосфатиды), сфингомиелины и из стероидных липидов - холестерин.

Глицерофосфатиды, или глицеролипиды, представляют собой сложные эфиры трехатомного спирта глицерина с двумя жирными кислотами и с фосфорной кислотой, которая в свою очередь может быть связана с различными химическими группами (холин, серин, инозит, этаноламин и др.). Так, например, в структуру наиболее часто встречающегося в мембранах глицеролипида лецитина входят участки двух жирных кислот, глицерина, фосфорной кислоты и холина.

Другая группа мембранных липидов называется сфингомнелиновой, в ней глицерин замещен аминоспиртом сфингозином.

Из липидов, относящихся к стероидам, больше всего в мембранах холестерина. В растительных клетках холестерин не обнаружен, его там заменяют фитостерины. У бактерий стерины отсутствуют.

Характерной особенностью липидов мембран является разделение их молекулы на две функционально различные части: неполярные (не несущие зарядов) хвосты, состоящие из жирных кислот, и заряженные полярные головки (рис. 117). Полярные головки несут на себе отрицательные заряды или могут быть нейтральными (в случае, если они имеют одновременно положительные и отрицательные заряды). Наличие неполярных хвостов липидов объясняет их хорошую растворимость в жирах и органических растворителях.

Если полярные липиды смешать с водой, то образуется эмульсия, состоящая из мицелл. При этом незаряженные (гидрофобные) хвосты будут стремиться образовывать однородную фазу в центре мицеллы, и заряженные, гидрофильные, головки будут торчать в водную фазу. Холестерин сам по себе мицелл не образует, но легко включается в мицеллы полярных липидов, в результате чего образуются мицеллы смешанного типа. Если, наоборот, к липидам добавить немного воды, то образуются мицеллы, как бы вывернутые наизнанку: их гидрофобные хвосты будут торчать в масляную фазу, а заряженные (гидрофильные) головки будут располагаться внутри мицеллы (рис. 118).

На поверхности воды растворы полярных липидов, растекаясь, образуют мономолекулярную пленку, в которой в водную фазу будут направлены заряженные (гидрофильные) головки, а неполярные хвосты будут обращены в сравнительно гидрофобную воздушную фазу. Смешивая с водой экстрагированные из мембран липиды или беря смеси разных липидов, можно получить бимолекулярные слои или мембраны толщиной около 3,5 нм, где периферические зоны слоя, смотрящие в водную фазу, будут содержать исключительно полярные головки, а незаряженные хвосты будут образовывать общую гидрофобную центральную зону такой образовавшейся мембраны (рис. 119).

Эта способность липидов самопроизвольно образовывать мембранные структуры определяется свойствами самих липидов, а именно наличием в их структуре полярных головок и неполярных хвостов.

В таких искусственные системах липидные мицеллы и мембраны могут взаимодействовать с белками своими полярными зонами или гидрофобными хвостами, при этом образуются искусственные липопротеидные мембраны, сходные с теми мембранами, которые можно выделить из клеток. Они имеют толщину около 7,5 нм. При окраске четырехокисью осмия искусственные мембраны обнаруживают в электронном микроскопе трехслойную структуру: два темных периферических слоя по 2,5 нм и светлый, центральный, примерно такой же толщины. Естественные клеточные мембраны имеют такое же строение.

Необходимо подчеркнуть, что как искусственные, так и естественные мембраны не представляют собой плоские слои, они всегда замкнуты сами на себя, образуя полые вакуоли, пузырьки, везикулы, плоские замкнутые мешки или трубчатые образования.

Представление о том, что в основе клеточных мембран лежит двойной липидный слой, было получено еще в 20-х гг. Было найдено, что если экстрагировать липиды из оболочки эритроцитов, а затем поместить липиды на поверхность водного мениска, то можно рассчитать площадь, занимаемую образовавшимся монослоем липидов. Оказалось, что эта площадь вдвое больше площади, занимаемой поверхностью эритроцитов, из которых были экстрагированы липиды. Было сделано предположение, что в мембранах эритроцитов липиды располагаются в два слоя. К тому же оказалось, что поверхностное натяжение мембраны клетки (1-2 дин/см2) гораздо ниже, чем поверхностное натяжение искусственного липидного слоя (7-15 дин/см2). Было обнаружено, что при добавлении белка к липидам поверхностное натяжение снижается до величины, характерной для поверхностного натяжения клеток.

Образовавшиеся искусственные липидные мембраны служат непроницаемым барьером для любых заряженных молекул, даже для ионов солей. Это определяет основное функциональное свойство мембран - служить преградой для свободной диффузии через слой липидов. Это свойство может быть использовано для практических целей. Так при смешивании липидов в водной среде образуется масса полых мембранных пузырьков, липосом (рис. 120). Жидкость, попавшая внутрь этих пузырьков, уже не может свободно обмениваться с жидкостью, находящейся снаружи. Таким образом искусственные мембраны липосом можно “загрузить” лекарственными веществами, которые могут в нужных концентрациях поступать к клеткам.

Мембранные белки встроены в билипидный слой

В среднем в липопротеидных мембранах белки по весу составляют 50%. Но количество белков в разных мембранах может быть различным. Так в мембранах митохондрий на долю белков приходится около 75%, а в плазматической мембране клеток миелиновой оболочки - около 25%. Но так как липидные молекулы имеют небольшой размер (около 0,5 нм) и молекулярный вес, их число по отношению к числу белковых молекул выше в 50 раз. Поэтому белковые молекулы как бы вкраплены в билипидный слой мембраны. Часть из них связана с липидными головками с помощью ионных (солевых) связей и поэтому легко экстрагируется из мембран растворами солей. Другие образуют солевые связи с полярными участками липидов через взаимодействие с ионами Mg++ или Ca++, такие белки экстрагируются с помощью хелатных соединений, таких, как версен (ЭДТА). Такие легко экстрагируемые белки большей частью расположены на мембранах со стороны цитоплазмы. В цитоплазматической мембране эти белки тесно связаны с белковыми структурами цитоскелета.

Большая часть белков взаимодействует с липидами в составе мембран на основе гидрофобных связей. Оказалось, что многие мембранные белки состоят как бы из двух частей: из участков, богатых полярными (несущими заряд) аминокислотами, и участков, обогащенных неполярными аминокислотами (глицином, аланином, валином, лейцином). Такие белки в липидных слоях мембран располагаются так, что их неполярные участки как бы погружены в “жирную” часть мембраны, где находятся гидрофобные участки липидов (рис. 121). Полярная (гидрофильная) же часть таких белков взаимодействует с головками липидов и обращена в сторону водной фазы (рис. 122), поэтому такие белки, связанные с липидами путем гидрофобных взаимодействий, практически не экстрагируются в водных фазах. Их можно выделить, лишь разрушая мембрану, экстрагируя из нее липиды или органическими растворителями, или детергентами. Поэтому эти белки мембран и называют интегральными.

Размер интегральных мембранных белков в среднем равен 8 нм, но встречаются крупные белки - до 35 нм величиной (белок тилакоидов хлоропластов). Обычно это очень асимметричные по своей природе белки и соответственно асимметрично локализованы в мембране (рис. 123): их разные функциональные части локализованы по обе стороны мембраны, и все белки данного типа расположены одинаково. С цитоплазматической стороны мембраны интегральные белки связаны с периферическими белками.

Эти представления, полученные при изучении химии клеточных мембран, были блестяще подтверждены морфологическими исследованиями. При использовании метода замораживания-скалывания, скол через мембраны может идти через центральную, липидную, зону. В этом случае обнажается масса глобул, белковой природы, находящихся в составе липидного слоя. Размер таких глобул около 4-8 нм. Эти и другие биохимические данные послужили основой для создания модели мембраны с мозаичной укладкой: мембрана состоит из неплотно упакованных белковых глобулярных белков, свободное пространство между которыми заполнено липидными молекулами (рис. 121). При этом часть белков может быть связана только с полярными группами липидов и может находиться на поверхности билипидного слоя; другие белки могут частично или даже полностью погружены из-за гидрофобных свойств своих участков в липидный слой; третьи - могут пронизывать мембрану насквозь. Интересно, что большая часть липидных молекул (70%) не связана с белками, так что белковые молекулы как бы плавают в “липидном озере”.

Липиды и белки мембран обладают латеральной подвижностью

Исследование искусственных липидных бислоев показало, что эти мембраны представляют собой двумерную жидкость, обладающую вязкостью, сравнимую с вязкостью оливкового масла. В составе таких и естественных мембран молекулы липидов постоянно движутся с огромной скоростью (коэффициент диффузии для них равен 10-8 см2 х с-1),достигающей 2 мкм за 1 с.

Липидные молекулы двигаются вдоль липидного слоя, могут вращаться вокруг своей оси, а также переходить из слоя в слой, что происходит редко и с помощью специальных переносчиков. Белки плавающие в “липидном озере” также обладают латеральной, продольной подвижностью, но скорость их перемещения в десятки и сотни раз ниже. Изучать перемещение белковых молекул в составе мембран на живых клетках проще на примере плазматической мембраны. Белки плазматической мембраны, гликопротеины, часто имеют олигосахаридные цепочки, смотрящие на внеклеточную среду.

Для исследования свойств плазматической мембраны широко используются лектины, белки растительного происхождения, которые специфически связываются с олигосахаридами мембранных белков. Так, лектин конканавалин А (КонА), выделенный из растения канавалии мечевидной, связывается с олигосахаридами, имеющими на концах глюкозу или маннозу. Лектин из бобов сои связывается с N-ацетилглюкозамином, а лектин из проростков пшеницы, кроме того, и с галактозой. На поверхности белков-лектинов имеются два или более района специфического связывания с углеводами. Если лектины добавлять к взвеси эритроцитов, то это вызывает их осаждение, сопровождающееся слипанием - агглютинация. Поэтому лектины еще называют агглютининами.

Такая реакция агглютинации эритроцитов вызвана тем, что лектин, например КонА, взаимодействуя с концевыми сахарами углеводов гликопротеидов, как бы сшивает эритроциты друг с другом, чем и вызывает их осаждение. Так как полисахариды есть на поверхности плазматической мембраны любых клеток, то лектины могут связываться с ними. Места посадки лектинов можно увидеть в электронном микроскопе, если связать лектины с электронноплотным белком ферритином. Более удобно регистрировать лектины на поверхности клеток с помощью иммунофлуоресцентного метода (см. выше). Использование этого метода позволило проследить за поверхностью белков в плоскости мембран. Так, оказалось, что при добавлении к клеткам, поверхность которых связана с КонА, антител против КонА, меченных флуорохромом, обнаруживается свечение по всей поверхности клетки. Это значит, что белки-гликопротеиды, полисахаридные цепи которых образуют слой, равномерно разбросаны по поверхности клеток. Однако через некоторое время на поверхности клетки видно не сплошное свечение, а отдельные множественные пятна или точки (их назвали “заплатками”, по-английски patch). Затем эти пятна собираются в одну зону - “колпачок”. Следовательно, белки, связанные с лектинами, могут быстро перемещаться в плоскости плазматической мембраны. Интересно, что “колпачок” всегда формируется над тем местом клетки, где находятся центриоли и аппарат Гольджи. Дальнейшая судьба этого колпачка может быть у разных клеток различной: у фибробластов колпачки могут отделяться и отрываться от тела при движении клетки, у других (лимфоциты) происходит поглощение этих участков внутрь клетки (эндоцитоз) и переваривание их там (рис. 124).

Латеральную подвижность белковых (гликопротеидных) молекул плазматической мембраны можно наблюдать при изучении клеточных гибридов, имеющих разные поверхностные антигены, которые можно пометить. В этом случае сначала в гибридной клетке антигены поверхностей были разобщены, а через некоторое время они равномерно распределились по всей поверхности гетерокариона .

Клеточные мембраны асимметричны

Состав липидов по обе стороны мембраны различен, что определяет асимметричность в строении билипидного слоя. Так, с помощью химического маркирования было найдено, что 80% сфингомиелина и 75% фосфатидилхолина, и 20% фосфатидилэтаноламина локализованы на наружной поверхности плазматической мембраны, на внутренней же - располагается весь фосфатидилсерин и 80% фосфатидилэтаноламина. Примерно такую же композицию имеют мембраны эндоплазматического ретикулума (для них наружной надо считать ту поверхность, которая обращена внутрь полости).

Особенно выражена асимметрия мембран в отношении интегральных белков. В составе естественных мембран белки строго ориентированы. Большей частью их N-концы смотрят в полость вакуолей или в случае плазматической мембраны, во внешнюю для клетки среду. Такое полярное расположение цепи белковой молекулы в липидном бислое создается в процессе синтеза мембранного белка на рибосоме (см. ниже). Полуинтегральные и примембранные белки также асимметрично расположены в мембранах. Так в эндоплазматическом ретикулуме белки-ферменты, синтезирующие липиды, расположены на цитозольной стороне мембран, а ферменты, пришивающие сахара к белковым цепочкам, гликозидазы, локализованы на внешней стороне мембраны.

Наличие углеводного компонента характерно практически для всех мембран клетки, но особенно для мембран вакуолярной системы и плазматической мембраны. Углеводный компонент мембран представлен главным образом гликопротеинами - молекулами белков, ковалентно (в отличие от нуклеопротеидов) связанных с цепочками углеводов. Как правило, цепочки углеводов расположены в наружных слоях мембран (для цитоплазматических вакуолей наружными считают слои, обращенные не к матриксу цитоплазмы, а в полость везикул или вакуолей). Они имеют ковалентные связи с интегральными белками, образуя гликопротеиды, или с липидами (гликолипиды). Углеводы мембран представляют собой короткие линейные или разветвленные цепочки, в состав которых входят галактоза, манноза, фруктоза, сахароза, N-ацетилглюкозамин, N-ацетилгалактозамин, пентозы - арабиноза и ксилоза, а также нейраминовая (сиаловая) кислота. Значение этого компонента очень велико для функционирования плазматической мембраны.

Разные мембраны имеют различные свойства

Несмотря на поразительную схожесть строения различных мембран, построенных по принципу липидного бислоя с вмонтированными в него белками, физические и химические свойства разных мембран различны. Это связано с тем, что в разных мембранах общий состав липидов значительно различается, что определяет особые свойства мембран.

Разные мембраны клетки могут отличаться друг от друга по количеству липидов. Так, плазматическая мембрана содержит 35-40% липидов, а мембраны митохондрий - 27-29%. Самое высокое содержание липидов в плазматической мембране шванновских клеток, образующих миелиновую оболочку нервов, - дл 80%.

Было обнаружено, что клеточные мембраны сильно отличаются друг от друга по составу липидов. Так, плазматические мембраны клеток животных богаты холестерином (до 30%) и в них мало лецитина, в то время как мембраны митохондрий, наоборот, богаты фосфолипидами и бедны холестерином. Из общего количества липидов содержание фосфатидилхолина (лецитина) во фракциях эндоплазматической сети составляет 60-70% от всех фосфолипидов, в то время как в плазматической мембране его может быть 25-35%.

В целом для плазматической мембраны характерно высокое содержание холестерина и сфинголипидов, а также преобладание насыщенных и мононенасыщенных жирных кислот в составе фосфолипидов, тогда как в митохондриях, эндоплазматической сети и во многих других цитоплаззматических мембранах содержится мало холестерина и сфинголипидов и сравнительно много полиненасыщенных жирных кислот. Видимо, в связи с этим мембраны цитоплазмы менее жесткие, чем плазматическая мембрана, они более “легкоплавки”.

Особенно отличаются мембраны по составу белков, которые, главным образом, определяют функциональные свойства мембран.

По биологической роли мембранные белки можно разделить на три группы: ферменты, рецепторные белки и структурные белки.

Набор ферментов в составе мембран может быть очень велик и разнообразен (например, в плазматической мембране клеток печени обнаружено не менее 24 различных ферментов). В разных мембранах существует характерный набор ферментов. Например, в плазматической мембране, как и во многих других, локализуется K+-Na+-зависимая АТФаза, участвующая в транспорте ионов. В митохондриях специфическим является набор белков - переносчиков электронов и феремент АТФ-синтетаза, обеспечивающие окислительное фосфорилирование и синтез АТФ.

Рецепторные белки специфически связываются с теми или иными веществами и как бы их узнают. Это белки-рецепторы для гормонов, для узнавания поверхности соседних клеток, вирусов, фагов у бактерий и т.д. К этой группе относятся фоторецепторные белки. Вообще же рецепторные белки входят в состав любых мембран. Так на внешней мембране митохондрий расположены рецепторы, участвующие в узнавании и транспорте митохондриальных белков, переносимых из цитозоля в митохондрии. На мембранах эндоплазматического ретикулума находятся рецепторы, узнающие и связывающие рибосомы, на ядерной оболочке - рецепторы кариофильных белков и т.д. На плазматической мембране расположены как рецепторы, узнающие соседние клетки или даже отдельные ионы солей (переносчики), так и белки, узнающие белки цитоскелета в цитоплазме.

Мембраны ассоциированы с цитоплазматическими белками

Со стороны цитоплазмы мембраны связаны через примембранные или собственно мембранные интегральные белки с разнообразными белковыми структурами цитоплазмы. К ним относятся в первую очередь компоненты цитоскелета. Это позволяет не только сделать мембраны более жесткими, но и обеспечивает подвижность мембран, создавая возможности для их транспортных функций. Например, жесткость плазматической мембраны безъядерных эритроцитов создается за счет связывания сети цитоплазматических белков с интегральными белками плазмолеммы. В ее состав входит белок, т.н. “белок полосы III”, который обеспечивает транспорт ионов через бислой, но одновременно через ряд белков связывается с сетью белков-спектринов, которые создают жесткую подмембранную сеть (рис. 125). Во многих эпителиальных клетках специальные белки плазматической мембраны связываются с элементами цитоскелета и участвуют в образовании целого ряда межклеточных соединений (десмосомы, адгезивный контакт и др.). С элементами цитоскелета связаны также оболочки клеточного ядра :внешняя ядерная мембрана тесно ассоциирована с промежуточными филаментами, которые фиксируют ядро в объеме цитоплазмы. Внутриклеточные вакуоли могут перемещаться в клетке только при взаимодействии с фибриллярными компонентами, такими как микротрубочки и микрофиламенты. Митохондрии перемещаются в клетке также за счет ассоциации с элементами цитоскелета.

Рост мембран происходит за счет встраивания готовых мембранных пузырьков

После деления клеток происходит увеличение объемов растущих дочерних клеток и тем самым рост клеточной поверхности, увеличение площади плазматической мембраны. Но это не единственный пример быстрого роста объема и поверхности. Поверхность быстро растущих клеток в тычиночных нитях злаков может за 1 ч увеличиться в 65 раз, т.е. каждую минуту плазмолемма нарастает на ее первоначальную величину. Такую большую скорость роста плазматической мембраны можно объяснить только тем, что происходит быстрое встраивание, интеркаляция, пузырьков в растущую плазматическую мембрану. Здесь, внутриклеточные мембранные пузырьки подходят к внутренней стороне плазматической мембраны (возможно, их подгоняют к себе микрофиламенты кортикального слоя), происходит слияние мембран и тем самым увеличение поверхности плазматической мембраны (рис. 126).

Откуда же берутся эти готовые блоки, мембранные пузырьки? Удалось проследить (см. ниже), что первичный генезис мембран происходит в гранулярном эндоплазматическом ретикулуме, который является источником всех клеточных мембран, кроме мембран митохондрий и пластид. От мембран гранулярного ЭПР отщепляются мелкие вакуоли, которые сливаются с мембранами аппарата Гольджи, от которого в свою очередь, отщепляются мелкие мембранные вакуоли, сливающиеся или с лизосомами, или с плазматической мембраной, или с секреторными вакуолями.

Таким образом, наблюдается последовательный каскад переходов одних мембран в другие. Первичные же мембранные вакуоли строятся за счет синтеза белка и липидов на мембранах гранулярного ЭПР.

Рост мембран митохондрий и пластид иного характера. Увеличение площади мембран митохондрий происходит за счет синтеза основной массы белков и липидов в гиалоплазме клетки, вслед за чем эти митохондриальные белки и липиды транспортируются через мембранную оболочку митохондрий и встраиваются в их компоненты.

studfile.net

Клеточная мембрана

Клеточная мембрана также называется плазматической (или цитоплазматической) мембраной и плазмалеммой. Данная структура не только отделяет внутреннее содержимое клетки от внешней среды, но также входит с состав большинства клеточных органелл и ядра, в свою очередь отделяя их от гиалоплазмы (цитозоля) — вязко-жидкой части цитоплазмы. Договоримся называть цитоплазматической мембраной ту, которая отделяет содержимое клетки от внешней среды. Остальными терминами обозначать все мембраны.

Строение клеточной мембраны

В основе строения клеточной (биологической) мембраны лежит двойной слой липидов (жиров). Формирование такого слоя связано с особенностями их молекул. Липиды не растворяются в воде, а по-своему в ней конденсируются. Одна часть отдельно взятой молекулы липида представляет собой полярную головку (она притягивается водой, т. е. гидрофильна), а другая — пару длинных неполярных хвостов (эта часть молекулы отталкивается от воды, т. е. гидрофобна). Такое строение молекул заставляет их «прятать» хвосты от воды и поворачивать к воде свои полярные головки.

В результате образуется двойной липидный слой, в котором неполярные хвосты находятся внутри (обращены друг к другу), а полярные головки обращены наружу (к внешней среде и цитоплазме). Поверхность такой мембраны гидрофильна, а внутри она гидрофобна.

В клеточных мембранах среди липидов преобладают фосфолипиды (относятся к сложным липидам). Их головки содержат остаток фосфорной кислоты. Кроме фосфолипидов есть гликолипиды (липиды + углеводы) и холестерол (относится к стеролам). Последний придает мембране жесткость, размещаясь в ее толще между хвостами остальных липидов (холестерол полностью гидрофобный).

За счет электростатического взаимодействия, к заряженным головкам липидов присоединяются некоторые молекулы белков, которые становятся поверхностными мембранными белками. Другие белки взаимодействуют с неполярными хвостами, частично погружаются в двойной слой или пронизывают его насквозь.

Таким образом, клеточная мембрана состоит из двойного слоя липидов, поверхностных (периферических), погруженных (полуинтегральных) и пронизывающих (интегральных) белков. Кроме того, некоторые белки и липиды с внешней стороны мембраны связаны с углеводными цепями.

Это жидкостно-мозаичная модель строения мембраны была выдвинута в 70-х годах XX века. До этого предполагалась бутербродная модель строения, согласно которой липидный бислой находится внутри, а с внутренней и наружной стороны мембрана покрыта сплошными слоями поверхностных белков. Однако накопление экспериментальных данных опровергло эту гипотезу.

Толщина мембран у разных клеток составляет около 8 нм. Мембраны (даже разные стороны одной) отличаются между собой по процентному соотношению различных видов липидов, белков, ферментативной активности и др. Какие-то мембраны более жидкие и более проницаемые, другие более плотные.

Разрывы клеточной мембраны легко сливаются из-за физико-химических особенностей липидного бислоя. В плоскости мембраны липиды и белки (если только они не закреплены цитоскелетом) перемещаются.

Функции клеточной мембраны

Большинство погруженных в клеточную мембрану белков выполняют ферментативную функцию (являются ферментами). Часто (особенно в мембранах органоидов клетки) ферменты располагаются в определенной последовательности так, что продукты реакции, катализируемые одним ферментом, переходят ко второму, затем третьему и т. д. Образуется конвейер, который стабилизируют поверхностные белки, т. к. не дают ферментам плавать вдоль липидного бислоя.

Клеточная мембрана выполняет отграничивающую (барьерную) от окружающей среды и в то же время транспортную функции. Можно сказать, это ее самое главное назначение. Цитоплазматическая мембрана, обладая прочностью и избирательной проницаемостью, поддерживает постоянство внутреннего состава клетки (ее гомеостаз и целостность).

При этом транспорт веществ происходит различными способами. Транспорт по градиенту концентрации предполагает передвижение веществ из области с их большей концентрацией в область с меньшей (диффузия). Так, например, диффундируют газы (CO2, O2).

Бывает также транспорт против градиента концентрации, но с затратой энергии.

Транспорт бывает пассивным и облегченным (когда ему помогает какой-нибудь переносчик). Пассивная диффузия через клеточную мембрану возможна для жирорастворимых веществ.

Есть особые белки, делающие мембраны проницаемыми для сахаров и других водорастворимых веществ. Такие переносчики соединяются с транспортируемыми молекулами и протаскивают их через мембрану. Так переносится глюкоза внутрь эритроцитов.

Пронизывающие белки, объединяясь, могут образовывать пору для перемещения некоторых веществ через мембрану. Такие переносчики не перемещаются, а образуют в мембране канал и работают аналогично ферментам, связывая определенное вещество. Перенос осуществляется благодаря изменению конформации белка, благодаря чему в мембране образуются каналы. Пример — натрий-калиевый насос.

Транспортная функция клеточной мембраны эукариот также реализуется за счет эндоцитоза (и экзоцитоза). Благодаря этим механизмам в клетку (и из нее) попадают крупные молекулы биополимеров, даже целые клетки. Эндо- и экзоцитоз характерны не для всех клеток эукариот (у прокариот его вообще нет). Так эндоцитоз наблюдается у простейших и низших беспозвоночны; у млекопитающих лейкоциты и макрофаги поглощают вредные вещества и бактерии, т. е. эндоцитоз выполняет защитную функцию для организма.

Эндоцитоз делится на фагоцитоз (цитоплазма обволакивает крупные частицы) и пиноцитоз (захват капелек жидкости с растворенными в ней веществами). Механизм этих процессов приблизительно одинаков. Поглощаемые вещества на поверхности клеток окружаются мембраной. Образуется пузырек (фагоцитарный или пиноцитарный), который затем перемещается внутрь клетки.

Экзоцитоз — это выведение цитоплазматической мембраной веществ из клетки (гормонов, полисахаридов, белков, жиров и др.). Данные вещества заключаются в мембранные пузырьки, которые подходят к клеточной мембране. Обе мембраны сливаются и содержимое оказывается за пределами клетки.

Цитоплазматическая мембрана выполняет рецепторную функцию. Для этого на ее внешней стороне располагаются структуры, способные распознавать химический или физический раздражитель. Часть пронизывающих плазмалемму белков с наружней стороны соединены с полисахаридными цепочками (образуя гликопротеиды). Это своеобразные молекулярные рецепторы, улавливающие гормоны. Когда конкретный гормон связывается со своим рецептором, то изменяет его структуру. Это в свою очередь запускает механизм клеточного ответа. При этом могут открываться каналы, и в клетку могут начать поступать определенные вещества или выводиться из нее.

Рецепторная функция клеточных мембран хорошо изучена на основе действия гормона инсулина. При связывании инсулина с его рецептором-гликопротеидом происходит активация каталитической внутриклеточной части этого белка (фермента аденилатциклазы). Фермент синтезирует из АТФ циклическую АМФ. Уже она активирует или подавляет различные ферменты клеточного метаболизма.

Рецепторная функция цитоплазматической мембраны также включает распознавание соседних однотипных клеток. Такие клетки прикрепляются друг к другу различными межклеточными контактами.

В тканях с помощью межклеточных контактов клетки могут обмениваться между собой информацией с помощью специально синтезируемых низкомолекулярных веществ. Одним из примеров подобного взаимодействия является контактное торможение, когда клетки прекращают рост, получив информацию, что свободное пространство занято.

Межклеточные контакты бывают простыми (мембраны разных клеток прилегают друг к другу), замковыми (впячивания мембраны одной клетки в другую), десмосомы (когда мембраны соединены пучками поперечных волокон, проникающих в цитоплазму). Кроме того, есть вариант межклеточных контактов за счет медиаторов (посредников) — синапсы. В них сигнал передается не только химическим, но и электрическим способом. Синапсами передаются сигналы между нервными клетками, а также от нервных к мышечным.

biology.su

Плазматическая мембрана: функции, строение :: SYL.ru

Клетка давно определена как структурная единица всего живого. И это действительно так. Ведь миллиарды этих структур, словно кирпичики, образуют растения и животных, бактерий и микроорганизмов, человека. Каждый орган, ткань, система организма - все выстроено из клеток.

Поэтому очень важно знать все тонкости ее внутреннего строения, химического состава и протекающих биохимических реакций. В данной статье рассмотрим, что представляет собой плазматическая мембрана, функции, которые она выполняет, и строение.

Органеллы клетки

Органеллами называются мельчайшие структурные части, находящие внутри клетки и обеспечивающие ее строение и жизнедеятельность. К ним относится множество разных представителей:

  1. Плазматическая мембрана.
  2. Ядро и ядрышки с хромосомным материалом.
  3. Цитоплазма с включениями.
  4. Лизосомы.
  5. Митохондрии.
  6. ЭПС (эндоплазматический ретикулум).
  7. Комплекс Гольджи.
  8. Рибосомы.
  9. Вакуоли и хлоропласты, если клетка растительная.

Каждая из перечисленных структур имеет свое сложное строение, сформирована ВМС (высокомолекулярными веществами), выполняет строго определенные функции и принимает участие в комплексе биохимических реакций, обеспечивающих жизнедеятельность всего организма в целом.

Общее строение мембраны

Строение плазматической мембраны изучалось еще с XVIII века. Именно тогда впервые была обнаружена ее способность выборочно пропускать или задерживать вещества. С развитием микроскопии исследование тонкой структуры и строения мембраны стало более возможным, и поэтому на сегодняшний день о ней известно практически все.

Синонимом ее основному названию является плазмалемма. Состав плазматической мембраны представлен тремя основными видами ВМС:

  • белки;
  • липиды;
  • углеводы.

Соотношение этих соединений и расположение может варьироваться у клеток разных организмов (растительной, животной или бактериальной).

Жидкостно-мозаичная модель строения

Многие ученые пытались высказывать предположения о том, каким образом располагаются липиды и белки в мембране. Однако только в 1972 г. учеными Сингером и Николсоном была предложена актуальная и сегодня модель, отражающая строение плазматической мембраны. Она названа жидкостно-мозаичной, и суть ее состоит в следующем: различные типы липидов располагаются в два слоя, ориентируясь гидрофобными концами молекул внутрь, а гидрофильными наружу. При этом вся структура, подобно мозаике, пронизана неодинаковыми типами белковых молекул, а также небольшим количеством гексоз (углеводов).

Вся предполагаемая система находится в постоянной динамике. Белки способны не просто пронизывать билипидный слой насквозь, но и ориентироваться у одной из его сторон, встраиваясь внутрь. Или вообще свободно "гулять" по мембране, меняя местоположение.

Доказательствами в защиту и оправданность этой теории служат данные микроскопического анализа. На черно-белых фотографиях явно видны слои мембраны, верхний и нижний одинаково темные, а средний более светлый. Также проводился ряд опытов, доказывающих, что слои основаны именно липидами и белками.

Белки плазматической мембраны

Если рассматривать процентное соотношение липидов и белков в мембране растительной клетки, то оно будет примерно одинаковое - 40/40%. В животной плазмалемме до 60% приходится на белки, в бактериальной - до 50%.

Плазматическая мембрана состоит из разных видов белков, и функции каждого из них также специфические.

1. Периферические молекулы. Это такие белки, которые ориентированы на поверхности внутренней или наружной частей бислоя липидов. Основные типы взаимодействий между структурой молекулы и слоем следующие:

  • водородные связи;
  • ионные взаимодействия или солевые мостики;
  • электростатическое притяжение.

Сами периферические белки - растворимые в воде соединения, поэтому их отделить от плазмалеммы без повреждений несложно. Какие вещества относятся к этим структурам? Самое распространенное и многочисленное - фибриллярный белок спектрин. Его в массе всех мембранных белков может быть до 75% у отдельных клеточных плазмалемм.

Зачем они нужны и как зависит от них плазматическая мембрана? Функции следующие:

  • формирование цитоскелета клетки;
  • поддержание постоянной формы;
  • ограничение излишней подвижности интегральных белков;
  • координация и осуществление транспорта ионов через плазмолемму;
  • могут соединяться с олигосахаридными цепями и участвовать в рецепторной передаче сигналов от мембраны и к ней.

2. Полуинтегральные белки. Такими молекулами называются те, что погружены в липидный бислой полностью или наполовину, на различную глубину. Примерами могут служить бактериородопсин, цитохромоксидаза и другие. Их называют также "заякоренными" белками, то есть будто прикрепленными внутри слоя. С чем они могут контактировать и за счет чего укореняются и удерживаются? Чаще всего благодаря специальным молекулам, которыми могут быть миристиновые или пальмитиновые кислоты, изопрены или стерины. Так, например, в плазмалемме животных встречаются полуинтегральные белки, связанные с холестерином. У растений и бактерий таких пока не обнаружено.

3. Интегральные белки. Одни из самых важных в плазмолемме. Представляют собой структуры, формирующие что-то вроде каналов, пронизывающих оба липидных слоя насквозь. Именно по этим путям осуществляются поступления многих молекул внутрь клетки, таких, которые липиды не пропускают. Поэтому основная роль интегральных структур - формирование ионных каналов для транспорта.

Существует два типа пронизывания липидного слоя:

  • монотопное - один раз;
  • политопное - в нескольких местах.

К разновидностям интегральных белков можно отнести такие, как гликофорин, протеолипиды, протеогликаны и другие. Все они нерастворимы в воде и тесно встроены в липидный слой, поэтому извлечь их без повреждения структуры плазмалеммы невозможно. По своему строению эти белки глобулярные, гидрофобный конец их расположен внутри липидного слоя, а гидрофильный - над ним, причем может возвышаться над всей структурой. За счет каких взаимодействий интегральные белки удерживаются внутри? В этом им помогают гидрофобные притяжения к радикалам жирных кислот.

Таким образом, существует целый ряд разных белковых молекул, которые включает в себя плазматическая мембрана. Строение и функции этих молекул можно объединить в несколько общих пунктов.

  1. Структурные периферические белки.
  2. Каталитические белки-ферменты (полуинтегральные и интегральные).
  3. Рецепторные (периферические, интегральные).
  4. Транспортные (интегральные).

Липиды плазмалеммы

Жидкий бислой липидов, которыми представлена плазматическая мембрана, может быть очень подвижным. Дело в том, что разные молекулы могут из верхнего слоя переходить в нижний и наоборот, то есть структура динамична. Такие переходы имеют свое название в науке - "флип-флоп". Образовалось оно от названия фермента, катализирующего процессы перестройки молекул внутри одного монослоя или из верхнего в нижний и обратно, флипазы.

Количество липидов, которое содержит клеточная плазматическая мембрана, примерно такое же, как число белков. Видовое разнообразие широко. Можно выделить такие основные группы:

  • фосфолипиды;
  • сфингофосполипиды;
  • гликолипиды;
  • холестерол.

К первой группе фосфолипидов относятся такие молекулы, как глицерофосфолипиды и сфингомиелины. Эти молекулы составляют основу бислоя мембраны. Гидрофобные концы соединений направлены внутрь слоя, гидрофильные - наружу. Примеры соединений:

  • фосфатидилхолин;
  • фосфатидилсерин;
  • кардиолипин;
  • фосфатидилинозитол;
  • сфингомиелин;
  • фосфатидилглицерин;
  • фосфатидилэтаноламин.

Для изучения данных молекул применяется способ разрушения слоя мембраны в некоторых частях фосфолипазой - специальным ферментом, катализирующим процесс распада фосфолипидов.

Функции перечисленных соединений следующие:

  1. Обеспечивают общую структуру и строение бислоя плазмалеммы.
  2. Соприкасаются с белками на поверхности и внутри слоя.
  3. Определяют агрегатное состояние, которое будет иметь плазматическая мембрана клетки при различных температурных условиях.
  4. Участвуют в ограниченной проницаемости плазмолеммы для разных молекул.
  5. Формируют разные типы взаимодействий клеточных мембран друг с другом (десмосома, щелевидное пространство, плотный контакт).

Сфингофосфолипиды и гликолипиды мембраны

Сфингомиелины или сфингофосфолипиды по своей химической природе - производные аминоспирта сфингозина. Наравне с фосфолипидами принимают участие в образовании билипидного слоя мембраны.

К гликолипидам относится гликокаликс - вещество, во многом определяющее свойства плазматической мембраны. Это желеподобное соединение, состоящее в основном из олигосахаридов. Гликокаликс занимает 10% от общей массы плазмалеммы. С этим веществом напрямую связана плазматическая мембрана, строение и функции, которые она выполняет. Так, например, гликокаликс осуществляет:

  • маркерную функцию мембраны;
  • рецепторную;
  • процессы пристеночного переваривания частиц внутри клетки.

Следует заметить, что наличие липида гликокаликса характерно только для животных клеток, но не для растительных, бактериальных и грибов.

Холестерол (стерин мембраны)

Является важной составной частью бислоя клетки у млекопитающих животных. В растительных не встречается, в бактериальных и грибах тоже. С химической точки зрения представляет собой спирт, циклический, одноатомный.

Равно как и остальные липиды, обладает свойствами амфифильности (наличие гидрофильного и гидрофобного конца молекулы). В мембране играет важную роль ограничителя и контролера текучести бислоя. Также участвует в выработке витамина D, является соучастником формирования половых гормонов.

В растительных же клетках присутствуют фитостеролы, которые не участвуют в образовании животных мембран. По некоторым данным известно, что эти вещества обеспечивают устойчивость растений к некоторым видам заболеваний.

Плазматическая мембрана образована холестеролом и другими липидами в общем взаимодействии, комплексе.

Углеводы мембраны

Данная группа веществ составляет примерно около 10% от общего состава соединений плазмалеммы. В простом виде моно-, ди-, полисахариды не встречаются, а только в форме гликопротеидов и гликолипидов.

Функции их заключаются в осуществлении контроля над внутри- и межклеточными взаимодействиями, поддержании определенной структуры и положения молекул белков в мембране, а также осуществлении рецепции.

Основные функции плазмалеммы

Очень велика роль, которую играет в клетке плазматическая мембрана. Функции ее многогранны и важны. Рассмотрим их подробнее.

  1. Отграничивает содержимое клетки от окружающей среды и защищает его от внешних воздействий. Благодаря наличию мембраны поддерживается на постоянном уровне химический состав цитоплазмы, ее содержимое.
  2. Плазмалемма содержит ряд белков, углеводов и липидов, которые придают и поддерживают определенную форму клетки.
  3. Мембрану имеет каждая клеточная органелла, которая называется мембранной везикулой (пузырьком).
  4. Компонентный состав плазмалеммы позволяет ей исполнять роль "стражника" клетки, осуществляя выборочный транспорт внутрь нее.
  5. Рецепторы, ферменты, биологически активные вещества функционируют в клетке и проникают в нее, сотрудничают с ее поверхностной оболочкой только благодаря белкам и липидам мембраны.
  6. Через плазмалемму осуществляется транспортировка не только соединений различной природы, но и ионов, важных для жизнедеятельности (натрий, калий, кальций и другие).
  7. Мембрана поддерживает осмотическое равновесие вне и внутри клетки.
  8. При помощи плазмалеммы осуществляется перенос ионов и соединений различной природы, электронов, гормонов из цитоплазмы в органеллы.
  9. Через нее же происходит поглощение солнечного света в виде квантов и пробуждение сигналов внутри клетки.
  10. Именно данной структурой осуществляется генерация импульсов действия и покоя.
  11. Механическая защита клетки и ее структур от небольших деформаций и физических воздействий.
  12. Адгезия клеток, то есть сцепление, и удержание их рядом друг с другом также осуществляется благодаря мембране.

Очень тесно взаимосвязана клеточная плазмалемма и цитоплазма. Плазматическая мембрана находится в тесном контакте со всеми веществами и молекулами, ионами, которые проникают внутрь клетки и свободно располагаются в вязкой внутренней среде. Данные соединения пытаются проникнуть внутрь всех клеточных структур, но барьером служит как раз мембрана, которая способна осуществлять разные типы транспорта через себя. Либо вообще не пропускать некоторые типы соединений.

Типы транспорта через клеточный барьер

Транспорт через плазматическую мембрану осуществляется несколькими способами, которые объединяет одна общая физическая особенность - закон диффузии веществ.

  1. Пассивный транспорт или диффузия и осмос. Подразумевает свободное перемещение ионов и растворителя через мембрану по градиенту из области с высокой концентрацией в область с низкой. Не требует расхода энергии, так как протекает сам по себе. Так происходит действие натрий-калиевого насоса, смена кислорода и углекислого газа при дыхании, выход глюкозы в кровь и так далее. Очень распространено такое явление, как облегченная диффузия. Данный процесс подразумевает наличие какого-либо вещества-помощника, которое цепляет нужное соединение и протаскивает за собой по белковому каналу или через липидный слой внутрь клетки.
  2. Активный транспорт подразумевает затраты энергии на процессы поглощения и выведения через мембрану. Есть два основных способа: экзоцитоз - выведение молекул и ионов наружу. Эндоцитоз - захватывание и проведение внутрь клетки твердых и жидких частиц. В свою очередь, второй способ активного транспорта включает в себя две разновидности процесса. Фагоцитоз, который заключается в заглатывании везикулой мембраны твердых молекул, веществ, соединений и ионов и проведение их внутрь клетки. При протекании данного процесса образуются крупные везикулы. Пиноцитоз, напротив, заключается в поглощении капелек жидкостей, растворителей и других веществ и проведении их внутрь клетки. Он подразумевает формирование пузырьков малых размеров.

Оба процесса - пиноцитоз и фагоцитоз - играют большую роль не только в осуществлении транспорта соединений и жидкостей, но и в защите клетки от обломков отмерших клеток, микроорганизмов и вредных соединений. Можно сказать, что эти способы активного транспорта также являются и вариантами иммунологической защиты клетки и ее структур от разных опасностей.

www.syl.ru

1_1 Строение клеточной мембраны | Кинезиолог

Клеточная мембрана (плазмалемма или плазмолемма)

Определение понятия

Клеточная мембрана (синонимы: плазмалемма, плазмолемма, цитоплазматическая мембрана, биомембрана) - это тройная липопротеиновая (т.е. "жиро-белковая") оболочка, отделяющая клетку от окружающей среды и осуществлящая управляемый обмен и связь между клеткой и окружающей её средой.

Главное в этом определении - не то, что мембрана отделяет клетку от среды, а как раз то, что она соединяет клетку с окружающей средой. Мембрана - это активная структура клетки, она постоянно работает.

Биологическая мембрана - это ультратонкая бимолекулярная пленка фосфолипидов, инкрустированная белками и полисахаридами. Эта клеточная структура лежит в основе барьерных, механических и матричных свойств живого организма (Антонов В.Ф., 1996).

Образное представление о мембране

Мне клеточная мембрана представляетсся в виде решетчатого забора с множеством дверей в нём, который окружает некую территорию. Всякая мелкая живность может через этот забор свободно перемещаться туда и обратно. Но более крупные посетители могут входить только через двери, да и то не всякие. У разных посетителей ключи только от своих дверей, и через чужие двери они проходить не могут. Так вот через этот забор постоянно идут потоки посетителей туда и обратно, потому что главная функция мембраны-забора двойная: отделять территорию от окружающего пространства и в то же время соединять её с окружающим пространством. Для этого и существует в заборе множество отверстий и дверей - транспортных механизмов мембраны!

Свойства мембраны

1. Проницаемость.

2. Полупроницаемость (частичная проницаемость).

3. Избирательная (синоним: селективная) проницаемость.

4. Активная проницаемость (синоним: активный транспорт).

5. Управляемая проницаемость.

Как видим, основное свойство мембраны - это её проницаемость по отношению к различным веществам.

6. Фагоцитоц и пиноцитоз.

7. Экзоцитоз.

8. Наличие электрических и химических потенциалов, точнее разности потенциалов между внутренней и наружной сторонами мембраны. Образно можно сказать, что "мембрана превращает клетку в "электрическую батарейку" с помощью управления ионными потоками". Подробности: смотреть тут.

9. Изменения электрического и химического потенциала.

10. Раздражимость. Специальные молекулярные рецепторы, находящиеся на мембране, могут соединяться с сигнальными (управляющими) веществами, вследствие чего может меняться состояние мембраны и всей клетки. Молекулярные рецепторы запускают биохимические реакции в ответ на соединение с ними лигандов (управляющих веществ). Важно отметить, что сигнальное вещество воздействует на рецептор снаружи, а изменения продолжаются внутри клетки. Получается, что мембрана передала информацию из окружающей среды во внутреннюю среду клетки.

11. Каталитическая ферментативная активность. Ферменты могут быть встроены в мембрану или связаны с её поверхностью (как внутри, так и снаружи клетки), и там они осуществляют свою ферментативную деятельность.

12. Изменение формы поверхности и её площади. Это позволяет мембране образовывать выросты наружу или, наоборот, впячивания внутрь клетки.

13. Способность образовывать контакты с другими клеточными мембранами.

14. Адгезия - способность прилипать к твёрдым поверхностям.

 

Краткий список свойств мембраны
  • Проницаемость.
  • Эндоцитоз, экзоцитоз, трансцитоз.
  • Потенциалы.
  • Раздражимость.
  • Ферментная активность.
  • Контакты.
  • Адгезия.

 Функции мембраны

1. Неполная изоляция внутреннего содержимого от внешней среды.

2. Главное в работе клеточной мембраны - это обмен различными веществами между клеткой и межклеточной средой. Этому служит такое свойство мембраны как проницаемость. Кроме того, мембрана регулирует этот обмен за счёт того, что регулирует свою проницаемость.

3. Ещё одна важная функция мембраны - создание разности химических и электрических потенциалов между её внутренней и наружной сторонами. За счёт этого внутри клетка имеет отрицательный электрический потенциал - потенциал покоя.

4. Через мембрану осуществляется также информационный обмен между клеткой и окружающей её средой. Специальные молекулярные рецепторы, расположенные на мембране, могут связываться с управляющими веществами (гормонами, медиаторами, модуляторами) и запускать в клетке биохимические реакции, приводящие к различным изменениям в работе клетки или в её структурах.

Видео: Строение мембраны клетки

 

 Видеолекция: Подробно о строении мембраны и транспорте

 Строение мембраны

Клеточная мембрана имеет универсальное трёхслойное строение. Её срединный жировой слой является сплошным, а верхний и нижний белковые слои покрывают его в виде мозаики из отдельных белковых участков. Жировой слой является основой, обеспечивающей обособление клетки от окружающей среды, изолирующей её от окружающей среды. Сам по себе он очень плохо пропускает водорастворимые вещества, но легко пропускает жирорастворимые. Поэтому проницаемость мембраны для водорастворимых веществ (например, ионов), приходится обеспечивать специальными белковыми структурами - транспортёрами и ионными каналами.

Ниже представлены микрофотографии реальных клеточных мембран контактирующих клеток, полученные с помощью электронного микроскопа, а также схематический рисунок, показывающий трёхслойность мембраны и мозаичность её белковых слоёв. Для увеличения изображения кликните на него.

 

 

 

 

 

 

 

 

 Отдельное изображение внутреннего липидного (жирового) слоя клеточной мембраны, пронизанного интегральными встроенными белками. Верхний и нижний белковые слои удалены, чтобы не мешать рассмотрению липидного двойного слоя

Рисунок выше: Неполное схематичное изображение клеточной мембраны (клеточной оболочки), приведённое в Википедии.

Учтите, что наружный и внутренний белковые слои здесь с мембраны сняты, чтобы нам лучше был виден центральный жировой двойной липидный слой. В реальной клеточной мембране сверху и снизу по жировой плёночке (мелкие шарики на рисунке) плавают большие белковые "острова", и мембрана получается более толстой, трёхслойной: белок-жир-белок. Так что она на самом деле похожа на сэндвич из двух белковых "кусков хлеба" с жирным слоем "масла" посередине, т.е. имеет трёхслойное строение, а не двухслойное.

На этом рисунке маленькие голубые и белые шарики соответствуют гидрофильным (смачиваемым) «головкам» липидов, а присоединённые к ним «ниточки» — гидрофобным (несмачиваемым) «хвостам». Из белков показаны только интегральные сквозные мембранные белки (красные глобулы и желтые спирали). Желтые овальные точки внутри мембраны — это молекулы холестерола Желто-зеленые цепочки бусинок на наружной стороне мембраны — цепочки олигосахаридов, формирующие гликокаликс. Гликокаликс - это как бы углеводный ("сахарный") "пушок" на мембране, образованный торчащими из неё длинными углеводно-белковыми молекулами.

Живая клетка — это маленький «белково-жировой мешочек», заполненный полужидким желеобразным содержимым, которое пронизано плёнками и трубочками.

Стенки этого мешочка образованы двойной жировой (липидной) плёночкой, облепленной изнутри и снаружи белками — клеточной мембраной. Поэтому говорят, что мембрана имеет трёхслойное строение: белки-жиры-белки. Внутри клетки также есть множество подобных жировых мембран, которые делят её внутреннее пространство на отсеки. Такими же мембранами окружены клеточные органеллы: ядро, митохондрии, хлоропласты. Так что мембрана - это универсальная молекулярная структура, свойственная всем клеткам и всем живым организмам.

Слева - уже не реальная, а искусственная модель кусочка биологической мембраны: это мгновенный снимок жирового фосфолипидного бислоя (т.е. двойного слоя) в процессе его молекулярно-динамического моделирования. Показана расчётная ячейка модели - 96 молекул ФХ (фосфатидилхолина) и 2304 молекулы воды, всего 20544 атомов.

Справа - наглядная модель одиночной молекулы того самого липида, из которых как раз и собирается мембранный липидный бислой. Вверху у него гидрофильная (водолюбивая) головка, а снизу - два гидрофобных (боящихся воды) хвостика. У этого липида есть простое название: 1-стероил-2-докозагексаеноил-Sn-глицеро-3-фосфатидилхолин (18:0/22:6(n-3)cis ФХ), но вам нет нужды его запоминать, если вы только не планируете довести своего преподавателя до обморока глубиной своих познаний.

Можно дать и более точное научное определение клетке:

Клетка – это ограниченная активной мембраной, упорядоченная, структурированная неоднородная система биополимеров, участвующих в единой совокупности обменных, энергетических и информационных процессов, и также осуществляющих поддержание и воспроизведение всей системы в целом.

Внутри клетка также пронизана мембранами, а между мембранами находится не вода, а вязкий гель/золь изменяемой плотности. Поэтому взаимодействующие молекулы в клетке не плавают свободно, как в пробирке с водным раствором, а в основном сидят (иммобилизованы) на полимерных структурах цитоскелета или внутриклеточных мембранах. И химические реакции поэтому проходят внутри клетки почти как в твердом теле, а не в жидкости. Наружная мембрана, окружающая клетку, также облеплена ферментами и молекулярными рецепторами, что делает её очень активной частью клетки.

Клеточная мембрана (плазмалемма, плазмолемма) - это активная оболочка, отделяющая клетку от окружающей среды и связывающая её с окружающей средой. © Сазонов В.Ф., 2016.

Из этого определения мембраны следует, что она не просто ограничивает клетку, а активно работает, связывая её с окружающей её средой.

Жир, из которого состоят мембраны, - особенный, поэтому его молекулы принято называть не просто жиром, а «липидами», «фосфолипидами», «сфинголипидами». Мембранная плёночка является двойной, т. е. она состоит из двух плёночек, слипшихся друг с другом. Поэтому в учебниках пишут, что основа клеточной мембраны состоит из двух липидных слоёв (или из "бислоя", т.е. двойного слоя). У каждого отдельно взятого липидного слоя одна сторона может смачиваться водой, а другая — не может. Так вот, эти плёночки слипаются друг с другом именно своими несмачивающимися сторонами.

Мембрана бактерий

Оболочка прокариотической клетки грамотрицательных бактерий состоит из нескольких слоёв, показанных на рисунке ниже.
Слои оболочки грамотрицательных бактерий:
1. Внутренняя трёхслойная цитоплазматическая мембрана, которая соприкасается с цитоплазмой.
2. Клеточная стенка, которая состоит из муреина.
3. Наружная трёхслойная цитоплазматическая мембрана, которая имеет такую же систему липидов с белковыми комплексами, как и внутренняя мембрана.
Общение грамотрицательных бактериальных клеток с внешним миром через такую сложную трёхступенчатую структуру не даёт им преимущества в выживании в суровых условиях по сравнению с грамположительным бактериями, имеющими менее мощную оболочку. Они точно так же плохо переносят высокие температуры, повышенную кислотность и перепады давления.

Рис. Сложная тройная клеточная оболочка грамотрицательных бактерий. Источник изображения: https://probakterii.ru/prokaryotes/organelles/membrana-bakterij.html

 

Рис. Сравнение оболочек грамположительных и грамотрицательных бактерий. Источник изображения: https://myslide.ru/presentation/512325_skachat-stroenie-bakterialnoj-kletki

 

Рис . Рафтовые неоднородности в мембране различного масштаба. а — Нанокластеры холестерола, сфингомиелина, гликосфинголипидов и белков плазматической мембраны различаются по составу. Считается, что в эти кластеры входят ГФИ-заякоренные белки, трансмембранные (ТМ) белки, специфичные для рафтов, и цитоплазматические белки, связанные с актиновыми филаментами. «Обычные» ТМ-белки не входят в состав рафтов. б — В ответ на внешние сигналы нанокластеры могут сливаться с образованием рафтовой платформы, важной для ТМ передачи сигналов и мембранного транспорта. в — Рафтовая фаза, видимая в микроскоп (ø ≈1 мкм), наблюдается исключительно в равновесных мембранных системах, таких как гигантские синтетические или мембранные везикулы. В «нативных» мембранах постоянный обмен веществом и энергией «дробит» рафтовую фазу до субдифракционных размеров.... Читайте дальше на Биомолекуле: https://biomolecula.ru/articles/lipidnyi-fundament-zhizni Источник изображения: https://biomolecula.ru/articles/lipidnyi-fundament-zhizni

 

Рис. Domain-length scales and the biomembrane as a protein–lipid composite material. (a) Length scales of domains in biomembranes. Shells, complexes and nanoclusters range from 1–10 nm, whereas nanodomains such as caveolae can be as large as 100 nm. (b) A schematic representation of the biomembrane as a composite of lipids and proteins. Estimates of lateral protein concentration are about 30,000 per μm2 based on rhodopsin in the rod outer segment28,29 and transmembrane proteins in the baby hamster kidney (BHK) cell membrane27. Lipids were assumed to occupy a surface area of ∼0.68 nm2 (diameter ∼0.93 nm) and an α-helix ∼1 nm2 (diameter ∼1.1 nm). A 30 × 30 nm2 section of membrane is depicted with 32 lipids on a side, 35 transmembrane proteins with 15 single-span, 12 tetraspan and eight heptaspan α-helical proteins, having assumed crosssectional areas in the plane of the membrane of 1 nm2, 4.5 nm2 and 8 nm2, respectively. Taking into account the area excluded by the proteins, the numerical lipid : protein ratio is ∼50. For a single-span helix with a diameter of ∼1.1 nm, there are about seven lipids in the first boundary layer; for a tetraspan protein with a diameter of ∼2.4 nm, there are about 11 lipids in the first boundary layer; for a heptaspan protein (such as rhodopsin) with a diameter of ∼3.2 nm, there would be about 14 lipids in the first boundary layer. Such first-boundary layer lipids are shown in white, whereas the second layer is shown in red. All other lipids are shown in yellow. Lipid-binding proteins and adaptors linking transmembrane proteins to membrane proximate cytoskeletal filaments are also depicted as different coloured structures beneath the plane of the membrane, but ectodomains of the membrane proteins are omitted for clarity. Источник изображения: https://www.nature.com/articles/ncb0107-7

 

Видеолекция: Плазматическая мембрана. Е.В. Шеваль, к.б.н.

 

Видеолекция: Мембрана как клеточная граница. А. Иляскин

 

Важность ионных каналов мембраны

Легко понять, что через мембранную жировую плёнку могут проникать в клетку только жирорастворимые вещества. Это жиры, спирты, газы. Например, в эритроцитх прямо через мембрану легко проходят внутрь и наружу кислород и углекислый газ. А вот вода и водорастворимые вещества  (например, ионы) просто так через мембрану не могут пройти внутрь любой клетки. Это значит, что для них нужны специальные отверстия. Но если просто сделать отверстие в жировой плёнке, то оно тут же затянется обратно. Что же делать? Выход в природе был найден: надо сделать специальные белковые транспортные структуры и протянуть их сквозь мембрану. Именно так и получаются каналы для пропускания не растворимых в жире веществ - ионные каналы мембраны клетки.

Итак, для придания своей мембране дополнительных свойства проницаемости  для полярных молекул (ионов и воды) клетка синтезирует в цитоплазме специальные белки, которые затем встраиваются в мембрану. Они бывают двух типов: белки-транспортёры (например, транспортные АТФазы) и белки-каналоформеры (образователи каналов). Эти белки встраиваются в двойной жировой слой мембраны и формируют транспортные структуры в виде транспортёров или в виде ионных каналов. Через эти транспортные структуры теперь могут проходить различные водорастворимые вещества, которые по-другому проходить сквозь жировую мембранную плёнку не могут.

Вообще, встроенные в мембрану белки ещё называются интегральными, именно потому что они как бы включаются в состав мембраны и пронизывают её насквозь. Другие белки, не интегральные, образуют как бы острова, «плавающие» по поверхности мембраны: либо по её наружной поверхности, либо по внутренней. Ведь всем известно, что жир является хорошей смазкой и скользить по нему получается легко!

 Выводы

1. В целом, мембрана получается трёхслойной:

1) наружный слой из белковых «островов»,

2) жировое двухслойное «море» (липидный бислой), т.е. двойная липидная плёнка,

3) внутренний слой из белковых «островов».

Но есть ещё рыхлый наружный слой - гликокаликс, который образуют торчащие из мембраны гликопротеины. Они являются молекулярными рецепторами, с которыми связываются сигнальные управляющие вещества.

2. В мембрану встроены специальные белковые структуры, обеспечивающие её протицаемость для ионов или других веществ. Не надо забывать, что в некоторых местах жировое море пронизано интегральными белками насквозь. И именно интегральные белки образуют специальные транспортные структуры клеточной мембраны (смотрите раздел ). Через них вещества попадают внутрь клетки, а также выводятся из клетки наружу.

3. С любой стороны мембраны (наружной и внутренней), а также внутри мембраны могут располагаться белки-ферменты, которые влияют и на состояние самой мембраны и на жизнь всей клетки.

Так что мембрана клетки - это активная изменчивая структура, которая активно работает в интересах всей клетки и связывает её с окружающим миром, а не просто является "защитной оболочкой". Это - самое важное, что надо знать про клеточную мембрану.

В медицине мембранные белки зачастую используются как “мишени” для лекарственных средств. В качестве таких мишеней выступают рецепторы, ионные каналы, ферменты, транспортные системы. В последнее время кроме мембраны мишенью для лекарственных веществ становятся также гены, спрятанные в клеточном ядре.

Видео: Введение в биофизику клеточной мембраны: Структура мембран 1 (Владимиров Ю.А.)

Видео: История, строение и функции клеточной мембраны: Структура мембран 2 (Владимиров Ю.А.)

Дополнительно: Антонов В.Ф., 1996.

Подробности о биомембранах на сайте Биомолекула

Читать далее:

© 2010-2018 Сазонов В.Ф., © 2010-2016 kineziolog.bodhy.ru, © 2016-2018 kineziolog.su

kineziolog.su

10. Структура, физико-химические свойства и функции биологических мембран

10. Структура, физико-химические свойства и функции биологических мембран. Латеральная диффузия в билипидном слое. Твердокристаллическая и жидкокристаллическая фазы в мембранах. Роль холестерина.

1. Строение и свойства клеточных мембран

Каждая клетка окружена оболочкой - мембраной толщиной около 10 нанометров (10 5-8 0 м или 0,01 микрометра). Это намного меньше минимального разрешаемого расстояния светового микроскопа, поэтому до появления электронных микроскопов о структуре мембран ничего не было известно. Сейчас, однако, она изучена довольно хорошо. Главная часть мембраны -  двойной фосфолипидный слой. . Молекулы фоcфолипидов состоят из  гилрофильной  (обладающей сродством к воде)головки , в состав которой входит фосфатная группа, и двух гидрофобных хвостов  (жирных кислот), имеющих сродство к жирам. В водной среде молекулы таких веществ самопроизвольно выстраиваются в виде двойногослоя, в котором головки обращены наружу, то есть к воде, а а хвосты друг к другу; при этом направления всех молекул параллельны. Такой билипидный слой  и является основой клеточных мембран.Кроме фосфолипидов, в состав мембраны обязательно входят  белки .

По их расположению белки делят на три группы. Одни белки  встроены в сам билипидный слой; их называют  интегральными белками. . Другая группа белков находится  на внутренней поверхности липидного слоя; это, в основном, ферменты. . Эффективность ферментов, закреплённых на мембране, намного выше, чем просто растворённых в цитоплазме; это, в частности, объясняется тем, что белки на мембране располагаются не случайным образом, а в строгом порядке, соответствующем порядку катализируемых ими биохимических реакций. Наконец, белки, находящиеся  на внешней поверхности мембраны,  выполняют, в основном, рецепторные ьфункции , то есть передают в клетку информацию о состоянии окружающей клетку среды. В частности, рецепторные белки играют очнь важную роль в иммунитете при их активном участии происходит синтез  антител .; велика роль этих белков и в развитии аллергических реакций. . В состав рецепторных белков входят  полисахариды , поэтому эти белки называют гликопротеидами  (гликоссахар,  греч ).Кроме мембраны, окружающей клетку, (её называют цитоплазматической мембраной), внутри клетки находится много внутренних мембран, которые делят клетку на большое число отсеков (компартментов). В принципе их структура аналогична структуре цитоплазматической мембраны, хотя имеются и специфические отличия.

Латеральная диффузия. Жидкокристаллическая и твёрдокристалличекая фазы

Билипидный слой отличается строго упорядоченным расположением фосфолипидных молекул, поэтому можно сказать, что мембрана - это  кристаллическая структура. Однако, в отличие от обычных кристаллов,молекулы в мембране могут  достаточно интенсивно перемещаться вдоль своего слоя . Дело в том, что в каждом слое мембраны имеются  незанятые (вакантные)  места .Соседняя с таким вакантным местом молекула фосфолипида может,  сохраняя свою ориентацию, переместиться на свободную позицию;то место, на котором она находилась, займёт новая молекула и т.д. В результате,  при сохранении общей упорядоченности (кристалличности) мембраны составляющие её молекулы будут весьма интенсивно двигаться в плоскости слоя. Расчёт показывает, что в среднем каждая фосфолипидная молекула перемещается с места на место около 10 57 0 раз в секунду. Вслед за фосфолипидными молекулами в движение, хотя и в меньшей степени, вовлекаются и молекулы белков. Такая подвижность молекул в мембране называется  латеральной диффузией .  Она играет важную роль в процессах транспорта.В принципе возможно перемещение молекулы  и из одного слоя в другой , но это связано с переворотом молекулы фосфолипида на 180 ,для чего надо преодолеть высокий потенциальный барьер. Поэтому подобный процесс очень мало вероятен и не имеет практического значения. С малойвероятностью перехода молекул из одного слоя в другой связана  асимметрия  мембран: внутренний и наружный слои мембран заметно отличаются по своим свойствам. Сочетание  упорядоченной структуры  (как в кристаллах) и высокой подвижности  молекул  (как в жидкостях)  характерно не только для мембран, но и для некоторых органических соединений, которые называют  жидкими кристаллами .. Клеточные мембраны тоже можно отнести к жидким кристаллам. Однако, вся мембрана не может быть жидкокристаллической – это снизило бы её прочность, нарушило бы правильное расположение ферментов и т.п. Поэтому в мембранах сочетаются  жидкокристаллическая и твёрдокристаллическая фазы  В последней вакантных мест очень мало, и подвижность молекул незначительна. Соотношение между фазами зависит от типа клетки и её функционального состояния.На подвижность фосфолипидных молекул большое влияние оказывает входящий в состав мембран холестерин . Молекулы холестерина увеличивают жёсткость мембраны, . ограничивая латеральную диффузию. Поэтому повышенное содержание холестерина в организме ведёт не только к нарушению кровообращения (из-за отложения холестерина в сосудах), но и к другимрасстройствам, связанным с нарушением функции мембран.

Функции биологических мембран

1.  Механическая  функция - поддержание целостности и автономности клеток.

2.  Транспортная  функция - избирательный перенос необходимых для жизнедеятельности клетки веществ в клетку и продуктов метаболизма из клетки.

3.  Барьерная функция  - полная или частичная защита клетки от проникновния в неё вредных веществ.

4.  Матричная  функция. Биологические мембраны служат основой для размещения ферментов, рецепторных белков и других активных веществ, что обеспечивает наиболее выгодную пространственно-временную организацию биофизических и биохимических процессов.

5.  Биоэлектрическая  функция .  Именно мембраны обеспечивают все электрические процессы в клетках и в организме в целом.

studfile.net

Биологические мембраны Википедия

У этого термина существуют и другие значения, см. Мембрана. Модель клеточной мембраны. Маленькие голубые и белые шарики — гидрофильные «головки» фосфолипидов, а присоединённые к ним линии — гидрофобные «хвосты». На рисунке показаны только интегральные мембранные белки (красные глобулы и жёлтые спирали). Жёлтые овальные точки внутри мембраны — молекулы холестерина. Жёлто-зелёные цепочки бусинок на наружной стороне мембраны — цепочки олигосахаридов, формирующие гликокаликс

Кле́точная мембра́на (также цитолемма, плазмалемма, или плазматическая мембрана) — эластическая молекулярная структура, состоящая из белков и липидов. Отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность; регулирует обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определённые условия среды.

Основные сведения[ | ]

Клеточная стенка, если таковая у клетки имеется (обычно есть у растительных, бактериальных и грибных клеток), покрывает клеточную мембрану.

Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») части. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Мембраны — структуры инвариабельные, весьма сходные у разных организмов. Некоторое исключение составляют археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет 7—8 нм.

Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погружённые одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов.

История исследования[ |

ru-wiki.ru

Двойной липидный слой мембран

Молекулы фосфолипидов и гликолипидов амфифильны, то есть углеводородные радикалы жирных кислот и сфингозина являются гидрофобными, а другая часть молекулы, образованная из углеводов, остатка фосфорной кислоты с присоединенным к нему холином, серином, этаноламином – гидрофильна. В результате этого в водной среде гидрофобные участки молекулы фосфолипидов вытесняются из водной среды и взаимодействуют между собой, а гидрофильные участки контактируют с водой, в результате образуется двойной липидный слой клеточных мембран (рис.9.1.). Этот двойной слой мембраны пронизан белковыми молекулами – микротрубочками. На наружной стороне мембраны прикреплены олигосахариды. Количество белка и углеводов в различных мембранах неодинаково. Белки мембран могут выполнять структурные функции, могут быть ферментами, осуществлять трансмембранный перенос питательных веществ, могут выполнять различные регуляторные функции. Мембраны всегда существуют в виде замкнутых структур (см. рис.9.1). Липидный бислой обладает способностью к самосборке. Эту способность мембран используют для создания искусственных липидных пузырьков – липосом.

Липосомы широко применяются как капсулы для доставки различных лекарственных веществ, антигенов, ферментов в различные органы и ткани, так как липидные капсулы способны проникать через клеточные мембраны. Это позволяет направлять лекарственные вещества точно по адресу в пораженный орган.

Рис.9.1. Схема клеточной мембраны из двойного липидного слоя. Гидрофобные участки молекулы липидов притягиваются между собой; гидрофильные участки молекулы находятся с наружной стороны. Молекулы белков пронизывают липидный бислой.

Обмен липидов

В организме нейтральные жиры находятся в 2-х формах: запасного жира и протоплазматического жира.

В состав протоплазматического жира входят фосфолипиды и липопротеиды. Они участвуют в формировании структурных компонентов клеток. Мембраны клеток, митохондрий и микросом состоят из липопротеидов и регулируют проницаемость отдельных веществ. Количество протоплазматического жира стабильно, и не изменяется в зависимости от голодания или ожирения.

Запасной (резервный) жир – в его состав входят триацилглицерины жирных кислот – находится в подкожной жировой клетчатке и в жировых депо внутренних органов.

Функции резервного жира заключаются в том, что это -запасной источник энергии, доступной для использования в период голодания; это – изоляционный материал от холода, от механических травм.

Важно также, что липиды, распадаясь, выделяют не только энергию, но и значительное количество воды:

При окислении 1 грамма белка выделяется – 0,4 г; углеводов – 0,5 г; липидов – 1 г воды. Это свойство липидов имеет большое значение для животных, обитающих в условиях пустыни (верблюды).

Переваривание липидов в желудочно-кишечном тракте

В полости рта липиды подвергаются лишь механической обработке. В желудке имеется небольшое количество липазы, которая гидролизует жиры. Малая активность липазы желудочного сока связана с кислой реакцией содержимого желудка. Кроме того, липаза может влиять только на эмульгированные жиры, в желудке отсутствуют условия для образования эмульсии жира. Только у детей и у моногастричных животных липаза желудочного сока играет важную роль в переваривании липидов.

Кишечник является основным местом переваривания липидов. В двенадцатиперстной кишке на липиды воздействует желчь печени и сок поджелудочной железы, одновременно происходит нейтрализация кишечного содержимого (химуса). Происходит эмульгирование жиров под действием желчных кислот. В состав желчи входят: холевая кислота, дезоксихолевая (3,12 дигидроксихолановая), хенодезоксихолевая (3,7 дигидроксихолановая) кислоты, натриевые соли парных желчных кислот: гликохолевая, гликодезоксихолевая, таурохолевая, тауродезоксихолевая. Они состоят из двух компонентов: холевой и дезоксихолевой кислот, а также глицина и таурина.

дезоксихолевая кислота хенодезоксихолевая кислота

гликохолевая кислота

таурохолевая кислота

Соли желчных кислот хорошо эмульгируют жиры. При этом увеличивается площадь соприкосновения ферментов с жирами и увеличивается действие фермента. Недостаточность синтеза желчных кислот или задержка поступления нарушает эффективность действия ферментов. Жиры, как правило, всасываются после гидролиза, но часть тонко эмульгированных жиров всасывается через стенку кишечника и переходит в лимфу без гидролиза.

Эстеразы разрывают в жирах эфирную связь между, спиртовой группой и карбоксильной группой карбоновых кислот и неорганических кислот (липаза, фосфатазы).

Под действием липазы жиры гидролизуются на глицерин и высшие жирные кислоты. Активность липазы возрастает под действием желчи, т.е. желчь непосредственно активирует липазу. Кроме того, активность липазы увеличивают ионы Са++ вследствие того, что ионы Са++ образуют нерастворимые соли (мыла) с освободившимися жирными кислотами и предотвращают их подавляющее влияние на активность липазы.

Под действием липазы в начале гидролизуются эфирные связи у α и α1 (боковых) углеродных атомов глицерина, затем у β-углеродного атома:

Под действием липазы до 40% триацилглицеридов расщепляются до глицерина и жирных кислот, 50-55% гидролизуется до 2-моноацилглицеринов и 3-10% не гидролизуется и всасываются в виде триацилглицеринов.

Стериды корма расщепляются ферментом холестеролэстеразой до холестерина и высших жирных кислот. Фосфатиды гидролизуются под влиянием фосфолипаз А, A2, С и D. Каждый фермент действует на определенную сложноэфирную связь липида. Точки приложения фосфолипаз представлены на схеме:

Фосфолипазы поджелудочной железы, тканевые фосфолипазы вырабатываются в виде проферментов и активируются трипсином. Фосфолипаза A2 змеиных ядов катализирует отщепление ненасыщенной жирной кислоты в положении 2 фосфоглицеридов. При этом образуются лизолецитины с гемолитическим действием.

фосфотидилхолин лизолецитин

Поэтому при попадании этого яда в кровь происходит сильный гемолиз.. В кишечнике эта опасность устраняется действием фосфолипазы A1, быстро инактивирующей лизофосфатид в результате отщепления от него остатка насыщенной жирной кислоты с превращением его в неактивный глицерофосфохолин.

Лизолецитины в малых концентрациях стимулируют дифференцировку лимфоидных клеток, активность протеинкиназы С, усиливают клеточную пролиферацию.

Коламинфосфатиды и серинфосфатиды расщепляются фосфолипазой А до лизоколаминфосфатидов, лизосеринфосфатидов, которые далее расщепляются фосфолипазой A2. Фосфолипазы С и D гидролизуют связи холина; коламина и серина с фосфорной кислотой и остатка фосфорной кислоты с глицерином.

Всасывание липидов происходит в тонком отделе кишечника. Жирные кислоты с длиной цепи менее 10 углеродных атомов всасываются в неэтерифицированной форме. Для всасывания необходимо присутствие эмульгирующих веществ – желчных кислот и желчи.

Ресинтез жира, характерного для данного организма, происходит в кишечной стенке. Концентрация липидов в крови в течение 3-5 часов после приема корма высокая. Хиломикроны – мелкие частицы жира, образующиеся после всасывания в кишечной стенке, представляют собой липопротеиды, окруженные фосфолипидами и белковой оболочкой, внутри содержат молекулы жира и желчных кислот. Они поступают в печень, где липиды подвергаются промежуточному обмену, а желчные кислоты проходят в желчный пузырь и далее обратно в кишечник (см. рис.9.3 на стр.192). В результате такого кругооборота теряется малое количество желчных кислот. Считают, что молекула желчной кислоты в сутки совершает 4 кругооборота.

studfile.net

Биологические мембраны

Состоят из фосфолипидов, гликолипидов, белков и холестерина. В состав липидных компонентов мембран входят только фосфолипиды, а жира и эфиров холестерина в мембранах нет. Липидные участки мембран построены из фосфолипидов (ФЛ), гликолипидов (ГЛ) и ХС.

Мембраны можно рассматривать как белково-липидные комплексы. Белки и липиды, входящие в состав этих комплексов, связаны слабыми типами связей, из которых наиболее часто встречается гидрофобное взаимодействие. Соотношение белков и липидов в различных мембранах разное. Но в большинстве плазматических мембран 50% белков и 50% липидов. Но есть мембраны, в которых много белков: внутренняя мембрана митохондрий на 80% состоит из белков, и только 20% составляют липиды. В миелиновых оболочках нервов, наоборот, 80% - липиды и 20% - белки. ХС встречается в основном в в плазматических мембранах.

В состав мембран входят только ЛИПОИДЫ (сложные липиды): ФОСФОЛИПИДЫ (ФЛ), ГЛИКОЛИПИДЫ (ГЛ) и из стероидов - ХОЛЕСТЕРИН (ХС).

Фосфолипиды.

Основу мембран составляют ФОСФОЛИПИДЫ - это липиды, содержащие ФОСФАТНЫЙ ОСТАТОК.

Состоят из четырех компонентов:

1) спирт

2) жирные кислоты

3) фосфат

4) полярная группировка (Если это СЕРИН, то глицерофосфолипид называют ФОСФАТИДИЛСЕРИН, если ХОЛИН, то глицерофосфолипид называют ФОСФАТИДИЛХОЛИН, если ЭТАНОЛАМИН, то глицерофосфолипид называют ФОСФАТИДИЛЭТАНОЛАМИН, если ИНОЗИТ, то глицерофосфолипид называют ФОСФАТИДИЛИНОЗИТ).

ОБЩАЯ ФОРМУЛА ГЛИЦЕРОФОСФОЛИПИДОВ :

В состав фосфолипидов могут входить 2 спирта: глицерин (глицерофосфолипиды) и сфингозин (сфингофосфолипиды, сфингомиелины). Все компоненты соединены эфирными связями. Кроме разделения на основе содержания той или иной полярной группы, их делят на основе содержащегося в них спирта:

1. ГЛИЦЕРОФОСФОЛИПИДЫ (ГФЛ) - содержат спирт глицерин.

Все они относятся к L-ряду. Есть асимметрический углеродный атом (на рисунке обозначен звездочкой). Полярная группировка может быть представлена аминокислотой серином (фосфатидилсерин), холином (фосфатидилхолин, другое название – лецитин), этаноламином (фосфатидилэтаноламин), инозитолом (фосфатидилинозитол), глицерином (полиглицерофосфатиды).

В природных фосфолипидах R1 и R2 - разные. R1 - насыщенная жирная кислота, R2.- ненасыщенная жирная кислота. Однако, есть и исключения: основным липидным компонентом легочного сурфактанта является ГФЛ, у которого и R1, и R2 – радикалы пальмитиновой кислоты, а полярная группировка – холин.

2. СФИНГОФОСФОЛИПИДЫ (СФЛ) - содержат спирт сфингозин: СФИНГОМИЕЛИНЫ.

Сфингофосфолипиды бывают различными по строению, но имеют общие черты. Молекула сфингофосфолипида содержит сфингозин, жирную кислоту, фосфорную кислоту и полярную группировку.

ОБЩАЯ ФОРМУЛА СФЛ представлена на рисунке.

Сфингозин - это 2-хатомный непредельный аминоспирт.

Жирная кислота присоединена пептидной связью к аминогруппе сфингозина.

Фосфолипиды - это амфифильные вещества. Расположение гидрофильных и гидрофобных участков особое. Гидрофильные участки (остаток фосфорной кислоты и полярная группировка) образуют "головку", а гидрофобные радикалы жирных кислот (R1 и R2) образуют "хвосты".

Поэтому молекулу фосфолипида обозначают:

ГЛИКОЛИПИДЫ.

Состоят из сфингозина, жирной кислоты и молекулы какого-либо углевода. Если в формулу СФЛ вместо фосфорной кислоты поставить какой-нибудь углевод, то получим формулу ГЛ. Гликолипиды тоже имеют гидрофильную "головку" и 2 гидрофобных "хвоста". Общая схема их строения представлена на рисунке:

Гликолипиды классифицируют в зависимости от строения углеводного компонента.

Различают 2 группы гликолипидов:

1. ЦЕРЕБРОЗИДЫ. В качестве углеводного компонента содержат какой-либо моносахарид (глюкоза, галактоза), либо дисахарид, или нейтральный небольшой олигосахарид.

2. ГАНГЛИОЗИДЫ. Углеводным компонентом является олигосахарид, состоящий из разных мономеров, как самих моносахаридов, так и их производных. Этот олигосахарид обязательно кислый, в его состав обязательно входит сиаловая кислота. Благодаря определенной последовательности мономеров, олигосахариды в составе ганглиозида придают молекуле выраженные антигенные свойства.

СТЕРОИДЫ.

Делятся на 2 группы.

1. Стерины (в их составе полициклическая стуктура стерана).

2. Стериды (эфиры холестерина и высших жирных кислот).

Свойства стероидов.

Стерины содержат гидроксильную группу (-ОН), поэтому они немножко гидрофильны, но всётаки их молекулы в основном гидрофобны. К ним относится холестерин.

Холестерин является полициклическим веществом. Преобладают гидрофобные свойства, но есть одна ОН-группа.

Стериды являются полностью гидрофобными веществами.

ФЛ и ГЛ вместе называют "полярные липиды". Если смешать полярные липиды с водой, то наблюдается взаимодействие между ними и при определенных условиях полярные липиды могут спонтанно образовывать бимолекулярный слой (бислой), схематично представленный на рисунке:

Между "головками" ионные, водородные связи, между "хвостами" - гидрофобное взаимодействие. Липидная часть мембраны состоит из таких липидов.

Свойства бислоя липидов:

1. Маленькая толщина - в 2 молекулы (4-13 нм)

2. Высокая эластичность. При 37оС липоиды находятся в жидком состоянии. Значит, возможны перемещения, однако скорость их диффузии в 100 раз меньше, чем у молекул воды.

Виды движений: а)в пределах своего монослоя; б) вращательные движения; в) флуктуация "хвостов".

Переход молекулы из одного слоя в другой - это редкое явление.

В настоящее время мембрана рассматривается как жидкокристаллическая структура. Наряду с диффузией имеется упорядоченность.

3. Третье свойство бислоя: низкая электропроводность. Поэтому липидный бислой является хорошим диэлектриком.

4. Четвертое свойство связано с избирательной проницаемостью липидного бислоя.

Сквозь него могут свободно проходить небольшие электронейтральные молекулы кислорода, углекислоты, азота, а также вещества, имеющие гидрофобную природу. Например, стероидные гормоны, обладающие внутриклеточным механизмом действия, широко применяются в медицине, в том числе и местно - они способны проникать даже через кожу, слизистую оболочку глаз (лечение кожных и глазных заболеваний). Органические растворители тоже проникают внутрь через кожу или легкие при вдыхании паров. Поэтому возможны отравления этими веществами через кожу, слизистые оболочки, дыхательные пути.

Заряженные молекулы через билипидный слой не проникают. Поэтому транспорт таких молекул осуществляют специальные мембранные транспортные белки.

Кроме липоидов, мембрана содержит и белки.

Встречаются 2 типа белков:

1. Периферические белки - взаимодействуют с "головками" полярных липидов электростатически.

2. Интегральные белки - взаимодействуют как с "головками" липидов, так и с гидрофобными "хвостами". В интегральных белках преобладают гидрофобные аминокислоты.

Белки, как и липоиды, слабо связаны с мембранами. Поэтому периферические белки часто сравнивают с льдинами, которые плавают по морю, а интегральные - с айсбергами. Имеются также специальные белки ("якорные"), которые прикрепляют мембрану к белкам цитоскелета.

studfile.net


Смотрите также